Ethernet for the ATLAS second level trigger?

Bob Dobinson, Stefan Haas and Brian Martin, CERN, Geneva

&

Marc Dobson, Frank Saka and John Strong, Royal Holloway College, University of London

Talk outline

• ATLAS level 2 trigger requirements
• Results from a 1024 node switching testbed
• The evolution of Ethernet
• Advantages of Ethernet for ATLAS level 2
• Baseline Ethernet measurements
• Ethernet switching fabrics
• The network interface problem
• Conclusions

The Problem: up to 100 kHz images processing rate, 5Gbytes/s data rate

1500 buffers B (distributed 1Mbyte image)

O(1000) 500Mips processors P analyse data from 5% buffers

ATLAS estimated requirements

• Large “scalable” switching fabric, peak throughput in excess of 10 Gbytes/s
• Efficient message passing between network nodes for messages with lengths approximately 100-1000 bytes
• Rates per node
 – Buffers up to 32kHz and 12 Mbytes/s
 – Processors up to 13kHz and 8Mbytes/s
The MACRAME switching testbed

- Very large switching testbed funded by EU
 - Uses 100Mbps DS links and 32 port C104 packet switches
 - Switching fabric is configurable as Clos network, grid, torus, hypercube etc
 - Network nodes can be preloaded with predetermined traffic patterns, packet dispatching overhead only 0.5μs

The MACRAME switching testbed

- Measurements
 - throughput and latency as a function of
 - switch topology
 - traffic patterns and rate
 - Random
 - Systematic
 - ATLAS level 2
 - scalability an important issue
A last word on MACRAME

• The results can be said to represent an upper bound on network performance
• There is essentially no node overhead in dispatching packets, real nodes would behave in a less performant fashion

The evolution of Ethernet

• Originally 10 Mbps CSMA-CD, shared coaxial cable segment, shared bus.
• Half duplex
• Later moved to twisted pair connections to a hub, logically a shared bus still
Ethernet bridges

- Packets to local destinations remain on local segment
- Packets not local passed across bridge
- Bridge port learns who is local

Recent developments

- 100 Mbps Fast Ethernet
- Emphasis away from shared segments towards point to point links and switches.
 - Switched 100 Mbps on desk top
- Point to point links allow full duplex operation
- Packet based flow control
- A move towards DS links and switches!

Gigabit developments

- Rapid move from 100 Mbps to a new Gigabit Ethernet standard
- Products available now; network interfaces, switches, testers etc
- Seen as a backbone interconnect but people predict it will end up on the desk-top too.

Advantages of Ethernet for ATLAS level 2 trigger

- Huge installed base, unlikely to be displaced as the commodity interconnect
- Highly competitive market, low prices.
- LHC start up 2005, lifetime of equipment in excess of decade. Ethernet will be around!
- Natural to ask “can it do the job”
- Combined with commodity PCs gives an off-the-shelf approach
Base line measurements

2x 200 MHz
Pentium
Ethernet Express
Pro 100 NIC
LINUX V4.2
TCP/IP sockets

Thread 1
send
receive
send
receive

Thread 2
Compute

Totally off the shelf

Summary of results

\[t_{\text{elapsed}} = t_{\text{zero}} + \frac{\text{message length}}{R_{\text{ asym}}} \]

\[R_{\text{ asym}} = \text{asymptotic data rate} = 11.6 \text{ Mbytes/s} \]

\[t_{\text{zero}} = \text{fixed overhead for zero length message} = 100\mu s \]

\[t_{\text{CPU}} = \text{average CPU time for send or receive} = 40\mu s \]

Implications for ATLAS

- 40 \mu s CPU overhead on 200MHz Pentium
 - Would use 130% of the CPU communicating at 32kHz
 - Limit the data transfer rate for ATLAS size messages to well below 12 Mbytes/s
- CPU power increasing \times 2 every 18 months, for constant architecture, the overhead should decrease as clock speed increases
- But more powerful CPU consumes more data \rightarrow more messages
Store and forward switches

- Delay through switch is one packet time. For minimum packet length, about 6µs, we measured 13µs.
- Switch delay increase linearly with packet length.

Building Large Ethernet Switching Fabrics

- Problem 1.
 - Normally commercial switches dynamically learn the required routing between sources and destination.
 - This imposes topology constraints → no loops → only a single connection between switching elements.
- Limits overall bandwidth through switch fabric.

Solutions

- Disable learning (learning not essential)
 → load static routing tables
- Use higher speed inter-switch connections
 → Gigabit link between 100 Mbps switch elements
- Treat several physical connections as one logical connection (various manufacturer specific implementations).
Building Large Ethernet Switching Fabrics

• Problem 2
 – The use of store and forward Ethernet switches to build multi-stage networks will increase the latency considerably

Solution

• Industry offers cut through switches → routing once header has been looked at.
• But store and forward still necessary when packets traverse link speed boundary (e.g. 100 Mbps to 1 Gbps)
• Learn to live with long latencies, size of buffers B increases but memory is cheap

Network interface issues, reducing the overhead

• The mechanisms are well known
 – Overlap communication and computation
 – Minimise interrupts
 – Avoid memory to memory copies
 – Avoid operating system calls and context switches
 – Implement light weight protocols and simple API
• Dealt with by smart NIC and SW design

Latency hiding

• Latency to fetch data through Ethernet switching fabrics may be long, hundreds of µs
• However, as long as the processors can be kept busy treating multiple events this may not matter
 – Requires low context switching multiprocessing kernel (helped by a smart NIC)
 Conclusion

• Ethernet is an option well worth exploring
 – ATLAS level 2 trigger pilot project will address
 this issue over the next two years