The restrictions of backplane interconnects are widely recognised to be a limiting factor in high performance distributed system applications. Serial technology offers a way out. The requirement is for a Standard, Low Cost, Low Latency, Physical Interconnection Layer. This layer must:

- Deliver reliable raw performance
- Support higher level protocols (ATM, Fiberchannel, SCI, etc)

Application areas:

- Silicon to Silicon: Physical layer only
- Chip to Chip: Physical layer only
- Board to Board: Physical or higher layer protocol
What is IEEE 1355?

- It is a Standard for a:
 - Low Cost, Low Latency, Physical Interconnection Layer
- There are two serial link protocols defined:
 - DS Links for the range 100 to 200 Mbaud
 - HS Links for the range 1 to 3 Gbaud
- The DS link protocol is a four wire bidirectional protocol.
 - Two wires in each direction. Self clocking code.
 - The Strobe line moves when the Data line does not.
- The HS link is a two wire bidirectional protocol
 - One wire in each direction, 8B/12B DC balanced code
 - Delay Locked Loop
- DS macrocell dimensions
 - 0.2 mm² 0.1 W @ 0.5micron CMOS
- HS macrocell dimensions
 - 1 mm² 0.3 W @ 0.5micron CMOS
What components support IEEE 1355?

- **DS LINKS**
- **STC101**:
 - Parallel to DS link serial interface chip.
 - 32 or 16 bit data bus
 - Synchronous or Asynchronous parallel transfer
 - 64 byte Fifo buffering
 - variable packet size (limit 4 Kbyte)
 - 100 Mbit/sec
- **STC104**:
 - 32 way non blocking cross bar switch
 - >300 Mbytes/s cross sectional bandwidth
 - ~1 µs packet latency
 - Grouped Adaptive Routing
 - Universal Routing
What components support IEEE 1355?

- **HS LINKS**
- **BULLIT:**
 - ✓ Parallel to HS link serial interface chip.
 - ✓ Technology evaluation device
 - ✓ Full or reduced protocol options
 - ✓ Fifo buffering
 - ✓ ~800 Mbit/sec
- **RCUBE:**
 - ✓ 8 way non blocking cross bar switch
 - ✓ >600 Mbytes/s cross sectional bandwidth
 - ✓ ~150 nS packet latency
 - ✓ Grouped Adaptive Routing
 - ✓ Parallel access to the routing core
Who developed IEEE 1355?

- The ESPRIT framework
 - Macrocell development under the OMI / HIC program.
 - System Design and Application work under OMI / MACRAME
 - Networking Analysis under PUMA
 - Embedded product development under GPMIMD

- Industrial Partners
 - Technology providers: BULL, SGS-THOMSON,
 - Technology exploiters: DOLPHIN, PARSYS, PARSYTEC, TELMAT, THOMSON
 - R & D & Applications: CERN, PACT, PARSYTEC, SINTEF
 - University Groups: OSLO, UPMC, SOUTHAMPTON

- Standards Working Group: >70 Organisations Represented
Where are the first applications of IEEE 1355?

- The GPMIMD project delivered
 - a 64 processor node machine
 - interconnected through four folded CLOS networks
 - 56 STC104 switches.
 - measured cross-sectional bandwidth ~1Gbyte/sec.
- This DS link technology is repackaged and marketed by Parsys, and Telmat
- At CERN the L3 experiment adopted the technology for the level 2 trigger in the data acquisition system.
- Parsytec is bringing a HS link based technology to market.
What IEEE 1355 products can be seen at HPCN?

- **PARSYS** is showing:
 - ✓ PCI to DS link interface
 - ✓ Ethernet to DS link interface
 - ✓ SCSI to DS link interface

- **PARSYTEC** is showing:
 - ✓ PCI to HS link interface
 - ✓ 8*8 discrete HS link routing module
 - ✓ Processor motherboard with HS link connectivity
 - ✓ Application example of steel quality control
IEEE1355 is a European technology for high performance serial connectivity.

- The standard passed ballot in 1995.
- Application of IEEE1355 to emerging standards is being actively pursued.
- Silicon solutions are here now to enable exploitation.
- Embedding the technology into user silicon is a simple procedure.
- Demanding real time applications are proving the technology.
- Commercial products exploiting the technology are available now.