

QUADRICS IN LINUX CLUSTERS

John Taylor

QLC 21/11/00

- Motivation
- Quadrics Cluster Products
- Performance
- Case Studies
- Development Activities

Super-Cluster Performance Landscape

Where is the HPC Market

- HPC has migrated from MPP to:
 - Clustered Shared Memory Systems
 - AlphaServer SC, IBM SP and Vector Machines
 - LINUX Clusters (Alpha or x86)
 - "Commoditized Network"
 - Quadrics solving the differential
 - degree of coherence/SSI programming model, manageability, administration

LINUX Pros and Cons

- Open Source
- Wide Availability
- Early Availability
- Cheaper
- Leverage MPP S/W

- Support
- Security
- Scalability
- TPSW Availability
- Performance

Business Strategy

Technology Leadership in High Performance Interconnect and Cluster Management Software (QsNet and RMS) Technology and Business Partnerships Creation of Channels HPC Services e.g Integration of v. large LINUX clusters

QSW extensible HPC Cluster Components

 Generic Technology for tightly coupled clusters of SMP's

• Where tightly coupled means:

- A hardware interconnect capable of scaling in both the number of SMP's and the number of CPU's per node
- A "SSI" providing a coherent view of the system as a single entity.
- The provision of application development environments consistent with the DSM model

High Performance Cluster Products from Quadrics

High performance interconnect Resource management system Parallel application development tools Integrated TPSW Support

Architecture Overview

- Management Node(s)
- Processing Nodes
- Quadrics Switch Management Node
- Management LAN
- Console Network LAN
- Disk Array

Quadrics Interconnect (QsNet)

- Two Custom Design ASICs make up the network
 - Quadrics Network Adapter (elan)
 - 2nd Generation 64bit/66 MHz. PCI -Based
 - Very Low Latency , High Bandwidth
 - QSW Multi-Stage Network (elite)
 - Modular Design , Fat Tree Topology
- Combined to provide high scalability, flexibility and tolerance

Network Adapter Network Components

16 way Switch Card

128 way Switch Chassis

QsNet Adaptor

- Intelligent PCI adapter
 - DMA engine
 - microprocessor w/64MB SDRAM
- One Sided Communications
 - Get/Put
 - Send/Receive (TPORTS or Queued DMAs)
- OS Bypass with Virtual Addressing
 - no page locking or copying
 - full protection

12/11/2000

- Full bi-sectional bandwidth
- Logarithmic cost
- Multiple routes
- Hardware broadcast
- General purpose topology

Quadrics 128-way Switch

Features

- $1-8 \times 16$ way switch cards
- 16×8 top switch cards
- Passive mid-plane
- 2 from 3 fault tolerant 48V PSU
- Live insertion
- Temperature, fan and PSU status
- Full JTAG boundary scan
- Performance
 - 42.5 Gbytes/sec bi-sectional bandwidth
 - 175 ns latency

Quadrics Cluster Software

- Standard Software Hierarchy + Enhancements to Couch Parallelism
 - Inter Processor Communication
 - Single Point Cluster Management (Switch, Console)
 - Scheduling of Parallel Programs
 - Scaleable File System
 - Accounting and Monitoring
 - High Availability Strategies
 - TPSW Support

Quadrics Software

RMS Products
Baseline ("RMS-lite") free with hardware
Value Added Product
Operating Systems
Tru64 UNIX V5.0 and V5.1
Alpha Linux 2.2.14 and 2.4
Intel Linux 2.4
Solaris 2.6

Quadrics Software Components (1) Baseline Product

- QsNet Linux drivers
- IP over QsNet
- MPI/SHMEM optimized for QsNet
- QsNet diagnostics
- Documentation (electronic)

Quadrics Software Components (2) Full Product

- Single point installation and system management
- RMS parallel job scheduler
- Pandora Graphical User Interface
- Filesystem over QsNet
- TotalView support
- Documentation (electronic plus one paper copy)
- The full product will be supplied as RPMs for the current product release of RedHat Linux fully qualified on a range of platforms and licensed using flexIm. Sources will be available to customers under a "no commercial reuse" license.

Software Overview

• Kernel Services

Checkpointing		IP			PFS					RMS	
	_		ElanIP	Ela	ElanFS		GLM				
			Kernel Messaging								
			Cluster Membership								
			Elan Driver								

Cluster Services

- Node status monitoring
 - bitmask of the functioning set of nodes
- Console logging
- Automated installation (Linux)
- Graphical User Interface Pandora

Application Development

- Standard compilers
- ATLAS Blas libraries
- MPI and Shmem
- Totalview
- VAMPIR (soon)
- PBS and LSF (future)

Performance Standard Benchmarks Application Specific

Performance Overview

- Line rate
- Peak data rate (adapter memory)
- MPI Send (33Mhz/64bit)
- DMA
- MPI send
- MPI Send (66MHz/64bit)
- DMA write
- MPI send

307 Mbytes/s 1.7 usec 4.5 usec

Daresbury Laboratory

Molecular Modelling on High-End and Commodity-Type Computers: Status and Perspectives

> Martyn F. Guest and Paul Sherwood CCLRC Daresbury Laboratory

> > m.f.guest@daresbury.ac.uk

http://www.cse.clrc.ac.uk/Activity/QUASI

Ouantum Simulations in Industry

25-27 September 2000

Development Activities

- Porting to IA-32 and IA-64 Intel Systems
- Extending Current Generation network
 - Tracking the increase in Node "fatness"
 - Increasing Node Count (Distributed Switch)
- Next generation network
 - Tracking the increase in CPU performance
 - Fibre Interconnect EMC is better.Copper is cheaper
- Software
 - High Availability Strategies
 - High Performance File Systems

References

- Http://www.quadrics.com
- http://www.compaq.com/hpc
- http://www.c3.lanl.gov/cic3/teams/par_arch/Publications
 .html
- http://www.cse.clrc.ac.uk/Activity/QUASI
- http://www.psc.edu