High-Speed Serializer for LHC Gbit/s Links in Radiation Tolerant 0.25mm CMOS Technology

P. Moreira, F. Faccio, E. Bij, A. Marchioro and J. Christiansen

> CERN-EP/MIC, Geneva Switzerland

Outline

- Introduction
- ASIC architecture
- Experimental results
 - Test setup
 - Total dose
 - SEU
- Summary

Introduction

- LHC detectors require Gbit/s links:
 - Sub-detectors ⇔ control/counting room
 - <u>Data readout</u> systems
 - Asynchronous/synchronous data transmission
 - <u>Trigger</u> systems <u>data path</u>
 - Data transmission must be synchronous with the 40.08MHz LHC master clock

LHC High-Speed Optical Links

- Typical configuration:
 - Unidirectional
- Transmitters inside the detectors:
 - Transmitters subject to <u>high levels of</u> <u>radiation</u> during the experiments lifetime
 - Large numbers \Rightarrow constrained power consumption

LHC High-Speed Optical Links

- LHC high-speed links requirements:
 - Hardness to total dose radiation effects
 - Operation tolerant to SEU
 - Constant latency transmission for trigger systems (40.08 MHz synchronous)
 - Low power dissipation
 - Low cost

ASIC Architecture

RD49 Workshop 1999

Test-Setup

RD49 Workshop 1999

Total Dose

- Total dose 10 Mrad (SiO₂):
 - X-rays 11.7 Krad/min
 - Single irradiation step
- Chips tested before/after irradiation for:
 - Jitter
 - Data transmission errors
- Data transmission:
 - 72 hours of error free data transmission (before/after)
- Cycle-to-cycle Jitter
 - RMS: 22ps
 - P-P: 170ps

RD49 Workshop 1999

Single Event Upsets

- Data transmission <u>under</u> irradiation with heavy ions
- Synchronization loss was the main source of errors:
 - mechanism not clear
 - further simulation and testing necessary
 - $LET_{th} = 7 \text{ MeV cm}^2/\text{mg}$
 - σ_{sat} = 4 10⁻⁵ cm²
 - No errors observed for:
 - LET_{th} = 6.2 MeV cm²/mg ! (fluence 9 10⁶ ions)
 - Did we wait long enough ?

RD49 Workshop 1999

Single Event Upsets

• Can we extrapolate for LHC?

CMS Environment	Pixel R = 4 – 20cm	Endcap ECAL R = 50 – 130cm	Tracker R = 65-120cm	Cavern R = 700 – 1200cm
Error/(chip hour)	1.4 10 ⁻²	1.9 10 ⁻⁴	8.4 10 ⁻⁵	3.1 10 ⁻⁸
#chips for one error each hour!	71	5.3K	12K	32M

- Values calculated assuming 1μm³ sensitive volume:
 - For the technology used the sensitive volume is probably smaller
 - The correct error rate estimate should be 2 to 4 times higher
- No SEU "robust" circuit techniques where used in the design!

Summary

- A 1.2Gbit/s data serializer has been fabricated
 - In 0.25μm CMOS
 - Using radiation tolerant layout
- The ASIC was tested for:
 - Functionality
 - Total dose irradiation
 - Single Event Upsets
- Consequences of operating the ASIC in different LHC environments were estimated