
Arches
Application, Refinement and Consolidation

of HIC Exploiting Standards

ESPRIT Project 20693

Deliverable D.3.1.1

Report on Interfacing Commodity
processors to IEEE1355 DS Links

CERN

Classification: Public
ISSUE DATE: March 1998

D 3.1.1 Report on interfacing Commodity
processors to IEEE1355 DS links

Executive Summary.

Description of task
Task 3.1 was defined in terms of porting the successful DS link technology away
from the defunct T9000 processor it had been designed for and towards commodity
processors for which a high performance interconnect market still existed.

This deliverable, which is in three parts covers:
• the study of baseline criteria and performance issues.
• the design and implementation of the hardware platform.
• the design and implementation of the software and firmware.

Effort
Within the Arches workpackage this task was estimated at one man-year of effort and
yet the deliverable clearly represents work well in excess of this. This extra work has
been accounted for outside this project.

Dissemination and technology transfer
The results of the study and development have also been published at conferences
such as RT97:

http://www.cern.ch/HSI/dshs/marcel/marcel.ps
and WOTUG-21:

http://www.cern.ch/HSI/dshs/publications/wotug21/dsnic/main.html
as well as being publicised on our public WEB pages:

http://www.cern.ch/HSI/dshs/

Summary
While the DS links have not had the success hoped for by their industrial sponsors
they continue to enjoy some limited success as a standardised component in the
European Space Agency program. As a result of the successful work achieved in this
task, and its public exposure, several contractors for the ESA program have
approached CERN with requests for technology transfer. These requests are currently
under negotiation.
We consider this a good reflection on the quality of the work achieved in this task.

1

D 3.1.1 Report on interfacing commodity
processors to IEEE 1355 DS links

PART 1: The study of baseline interfacing architectures and their
performance issues

1 Introduction 2

2 T9000 Communication Performance 2

3 The T9000 used as a communications co-processor 9

4 A PowerPC driving a DS link PMC 11

6 Conclusions: what has been learned? 14

References 15

2

1 Introduction

The DS links which form part of the IEEE 1355 standard[1] were originally integrated onto
the T9000 Transputer chip[2] to provide interprocessor communications. The integration of
the processor and its memory with four DS links was extremely efficient by virtue of a com-
munications processor, the Virtual Channel Processor (VCP), which implemented packet
and message passing protocols, as well as multiplexing multiple virtual links onto physical
links. The overall communications performance was aided by the very low process context
switching time of the T9000. The result being very low message passing overheads and good
usage of the available link bandwidth.

However, despite the T9000’s impressive communications capability, by the time it was in
production it was unable to compete computationally with state of the art microprocessors.
The T9000 has been used successfully as an I/O processor to provide DS link capability to
other microprocessors with significantly higher computational performance. An example
presented within this report is the DEC Alpha, but with the cessation of production and sup-
ply of the T9000 announced by SGS Thomson it has become important to find a replacement
strategy for interfacing commodity processors to DS links.

The migration towards other processors had to be carefully considered. We had to analyse
the communications performance of the T9000 in order to identify the strengths and weak-
nesses of the architecture, both as stand-alone and as a communications co-processor to the
DEC-Alpha. A simple interface using a host processor to drive a DS link directly has also
been implemented, i.e. the VCP functionality is provided by the host. The experience gained
from the investigation and development of these systems allows the key design issues of a
network interface to be identified. All of these issues were fed into the design and develop-
ment of an efficient DSNIC (DS Link Network Interface Controller) which is presented in
the second and third parts of this deliverable.

This report first presents as a baseline the performance of the T9000 driving DS links. Fac-
tors contributing to low message latency and high data throughput are identified. The use of
the T9000 as an I/O processor for a DEC Alpha microprocessor is then discussed. Following
this the performance of a PowerPC emulating the VCP functionality of the T9000 in soft-
ware is presented. Finally the important design issues of a network interface (applicable to
any serial link technology) are identified.

2 T9000 Communication Performance

This section presents an evaluation of the communications performance of the T9000 and
the factors affecting performance are identified. The performance of the T9000 is the
baseline by which other DS interfacing implementations can be judged. Further details on
the communications performance of the T9000 can be found in [3,4].

2.1 Single link performance

The message passing overhead (elapsed time to send a zero length message) between two
directly connected 20 MHz T9000s was measured to be 7.5µsecs. If the T9000s are
connected via a STC104 switch [5] then the overhead is 9.6µsecs.

3

In Figure 1 the dependency of the bandwidth between two 20 MHz T9000s on the number of
virtual links used is presented. The T9000s are connected via a single STC104 switch. The
figure shows the bandwidth as a function of message size for one to five virtual links mapped
onto a single physical link. The bandwidth represents the usable amount of data exchanged
between two T9000s running at 20 MHz. The discontinuity in bandwidth at each 32 byte
boundary is due to the packetisation performed by the VCP. Data is transferred in packets of
maximum length 32 bytes and each individual packet on a virtual link must be acknowl-
edged before another is transmitted. A 32 byte message requires a single packet to be sent
and acknowledged, whereas a 33 byte message requires two packets to be sent and acknowl-
edged.

FIGURE 1 Single link bandwidth, uni-directional. 20 MHz T9000s, 100 Mbits/s links, 64 bit
memory interface, 8K cache 8K internal memory, connected via single STC104.

In Figure 1 the increase in bandwidth for more virtual links can be accounted for by the
increased packet inter-leaving performed by the VCP and more efficient use of its pipelined
architecture. The VCP inputs the data on multiple virtual links from the link and writes it
directly to the required area of user memory, it can then re-schedule the relevant process
requiring that data. When multiple virtual links are used, packets for different virtual links
may be transmitted independently of the reception of acknowledge packets on other virtual
links. If a single virtual link is in use, a packet is sent, then the virtual link (and physical link)
is idle until the acknowledge is received, which reduces the bandwidth. If another virtual
link is in use, the first virtual link (waiting for an acknowledge) stays idle but the second can
use the link. Directly connected T9000s achieve a higher bandwidth over a single virtual link
(6.4 Mbytes/s) because the acknowledges pass between the T9000s in less time. A constant
message start up time accounts for the reduced bandwidths for smaller messages.

1 virtual link

2 virtual links

3 virtual links

4 virtual links

5 virtual links

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

7

Message size, Bytes

B
an

dw
id

th
, M

B
yt

e/
s

4

The theoretical maximum of a DS link running at 100 Mbits/s using 2 byte headers is 9.26
Mbytes/s [6]. The measured limit is only 7.0 Mbytes/s. This is due to the fact that the VCP is
only running at 20 MHz, whereas it was designed to achieve full link throughput at above 30
MHz.

The elapsed time for sending a message is composed of two parts: a fixed message passing
overhead (T0) and the time to transfer the message, which is the message length (L) divided
by the effective transfer rate (Reffective). The relation can be expressed as

The message passing overhead is defined as the elapsed time to transfer a zero length
message from an application program in the source node to an application program in the
destination node. For the T9000 implementation this value is 7.5 microseconds.

The message passing overhead can be divided into two further components: the network
latency and the node message latency. The network latency is defined as the time to propa-
gate a single byte through the switching network. The node message latency is defined as the
I/O initiation time in a source or destination.

The equation allows the calculation of two very important parameters for quantifying the
performance of parallel computers: the message passing overhead and the achieved asymp-
totic bandwidth. For ideal performance the Reffective in the above equation should be the raw
transmission speed of the interconnection medium. In Figure 2 the elapsed time to send a
message on a single virtual link is plotted against message length. In addition, the ideal per-
formance is shown where Reffective is the raw transmission speed of the link. The raw trans-
mission rate of a 100 Mbits/s link is approximately 10 Mbytes/s (one byte sent as a 10 bit
token over the link).

FIGURE 2 Measured and theoretical results for the T9000 (20 MHz T9000s using single virtual
link connected via a single STC104)

ElapsedTime T0
L

Reffective
--------------------------+=

200 400 600 800 1000

50

100

150

200

Message Length in bytes

E
la

ps
ed

 ti
m

e
in

 m
ic

ro
se

co
nd

s
to

 tr
an

sf
er

 m
es

sa
ge

Measured performance for T9000

Theoretical performance for
Reffective = raw link transmission rate

Message passing overhead
= 7.5 microseconds

(~10 Mbytes/s)

(Reffective ~ 4.7 Mbytes/s)

5

It is clear that the achieved Reffective is not equal to the raw transmission rate of the link. Rea-
sons for this are (applicable to any link interface):

• Node interface to the raw link, i.e. the rate at which data can be transferred into the
application program from the link - the low clock speed of the VCP on the T9000 (20
MHz) limits performance to 7 Mbytes/s (for multiple virtual links)

• Protocol implementation overheads, e.g. packetisation of messages and production of
acknowledges - this limits the performance to 4.7 Mbytes/s for a single virtual link, due to
the strict acknowledge scheme of the T9000

2.2 Dependence on memory bandwidth

If data is written to the links from internal memory of a 20 MHz T9000 the limit when four
links are in use is 28 Mbytes/s. Again, the bottleneck is the VCP which can only drive the
links at 28 Mbytes/s. If data is accessed from external memory the limit is 16.5 Mbytes/s.
This is due to a combination of the poor design of the external memory interface and the low
clock speed (20 MHz compared to 50 MHz design).

2.3 One to four physical links

Figure 3 demonstrates that the maximum achieved bandwidth scales linearly with the
number of physical links used for uni-directional traffic, i.e. the rate at which the VCP can
drive the links scales linearly with the number of links in use.

FIGURE 3 Multiple links, 20 MHz T9000s, all data in internal memory, 100 Mbits/s links.
Connections via a single STC104.

4 Links, uni−directional, 20 v. links

3 Links, uni−directional, 15 v. links

2 Links, uni−directional, 10 v. links

1 Link, uni−directional, 5 v. links

10
0

10
1

10
2

10
3

0

10

20

30

40

50

Message length, Bytes

Ba
nd

w
id

th
, M

By
te

/s

6

2.4 Dependence on clock speed

The measured bandwidths as a function of message size when using 20 and 25 MHz proces-
sors are shown in Figure 3 (20 MHz) and Figure 4 (25 MHz). The theoretical limit for the
single link bandwidth is 9.26 Mbytes/s on each physical link. The bandwidths measured at
20 and 25 MHz fall short of the 9.26 Mbytes/s, but there is a clear improvement from the 20
MHz to 25 MHz processors. This demonstrates the improvement of increasing the speed of
the VCP, however, it is still unable to exploit fully the capacity of the links. However, if the
T9000 were running at 30 MHz the VCP should be able to reach the theoretical limits for the
link bandwidth.

FIGURE 4 Multiple links, 25 MHz T9000s, all data from internal memory, 100 Mbits/s links.
Connections via STC104s.The theoretical limits of 1 to 4 DS links are also shown.

2.5 Interrupt Response and Context Switch Summary

The T9000 contains a hardware scheduler providing efficient interrupt response and context
switch times. The T9000 interrupt response time (time from interrupt until user specified
code is executing) is 1.9µs. This is the time for a full process context switch, i.e. a context
switch which may occur when any instruction is being executed. A partial context switch (or
timeslice operation) which may only occur at certain instructions requires 1.4µs.

2.6 Short Message Sends

An investigation has been carried out to measure the number of short messages that a single
T9000 can produce per second. Ten processes run concurrently on a single source and a
single destination, each process on the source is communicating to a single process on the
destination via a virtual link. The source processor sends in parallel on all virtual links,
continually switching between the processes, sending as many short messages as possible.

4 Links, uni−directional, 20 v. links

3 Links, uni−directional, 15 v. links

2 Links, uni−directional, 10 v. links

1 Link, uni−directional, 5 v. links

10
0

10
1

10
2

10
3

0

10

20

30

40

50

Message length, Bytes

B
an

dw
id

th
, M

B
yt

e/
s

Bandwidth of 25Mhz T9000 processors

9.26 Mbytes/s

18.52 Mbytes/s

27.78 Mbytes/s

37.04 Mbytes/s

7

On the destination the processes continually wait for input. When a packet arrives at the
destination the corresponding process for that virtual link will be rescheduled.

The performance depends heavily on the efficiency of the VCP and context switching times.
Results are produced from two 20 MHz T9000s with a single STC104 switch between them.
The following parameters are varied: message length, number of virtual links and number of
physical links. This investigation is of interest for two reasons:

• It evaluates the ability to context switch during communications. When short messages are
used the latencies of context switching are more dominant than when larger messages are
in use. Ten processes are continuously context switching on a single processor every time
they send a single packet (message).

• It measures the capability of the processor to perform as a centralised supervisor or control
processor in a distributed system, where many short messages must be sent to large
numbers of possible destinations.

Figure 5 shows the performance when using up to four physical links. The maximum rate at
which messages can be sent is 430 KHz, which occurs for 0 to 32 byte messages.

FIGURE 5 Short message sends, vary number of physical links, between two 20 MHz T9000s
connected by STC104s, 64 bit interface 8 K cache 8 K internal memory. 100 Mbits/s
links. 10 virtual links in use per physical link.

At 430 KHz the total CPU time required to produce each message is 2.33µs. This corre-
sponds to 1.4µs for a partial context switch and less than 1µs of CPU time to perform the
communication. This performance is possible due to extremely low context switch times and
the ability of the VCP to multiplex multiple virtual links onto the physical links without
loading the CPU.

4 links

3 links

2 links

1 link

10
0

10
1

10
2

10
3

0

50

100

150

200

250

300

350

400

450

Message Length, Bytes

N
um

be
r o

f m
es

sa
ge

s
pe

r s
ec

on
d

(K
H

z)

8

2.7 Combined Communication and Computation

An important aspect of performance is the load which communications place on the CPU.
There are two important times to consider for a communication: the actual time of the
communication and the time the CPU is utilised.

The following test has been carried out: a single processor runs two processes, one performs
floating point operations and the other performs communication over a single virtual link to
a second processor. The processors are connected via a single STC104. The number of float-
ing point instructions carried out by the first process is measured during communication, this
gives the fraction of the CPU which is available. The message length is varied (which alters
the communications bandwidth) and the load of this communication on the CPU is meas-
ured. Measuring the load communication imposes on the CPU is the same as measuring the
extent to which communications and computation can be overlapped. The results are shown
in Figure 6. It is clear that the load on the CPU is below 100% for all message lengths, for 10
Kbyte messages the load on the CPU is ~20%. The reduction in CPU load as the message
length increases is due to a constant message passing overhead on the T9000. The main fac-
tors which allow the T9000 to achieve such results are:

• The VCP (a dedicated on-chip communications processor) which off-loads protocol and
general communications requirements from the CPU. The VCP also facilitates a low
message passing overhead and efficient use of the available link bandwidth (it avoids
memory copies)

• Low context switch times (provided by a hardware scheduler) to allow the computation
process to take full advantage of the remaining CPU time.

The increase in CPU load above 10 Kbytes is due to a cache effect, the T9000 uses 8 Kbytes
of cache for the measurements.

FIGURE 6 Comparison of throughput and communications Load on CPU.

10
1

10
2

10
3

10
4

10
5

1

2

3

4

5

Ba
nd

wi
dt

h
(M

by
te

s/
s)

Comparison of Throughput and CPU Load

10
1

10
2

10
3

10
4

10
5

20

30

40

50

Message Length (Bytes)

CP
U

Lo
ad

 (%
)

9

2.8 Summary

The T9000 communications results show extremely low message passing overheads (i.e. 7.5
µs between two directly connected processors). The 25 MHz T9000 is very close to exploit-
ing the full bandwidth of 4 DS links, a 30 MHz T9000 could saturate the links fully. The
T9000 can produce over 400,000 short messages per second and for longer messages the
communications load on the CPU is approximately 20%. Primarily, this performance has
been possible due to low context switching times and the dedicated communications proces-
sor (the VCP).

3 The T9000 used as a communications co-processor

The TransAlpha module[7] was designed to remedy the lack of computing power provided
by the T9000. The module consists of a T9000 Transputer, acting now solely as a
communications controller, and a DEC 21066A Alpha processor used to boost
computational performance.

In order to facilitate the inclusion of this module into existing networks the module has a
mother-card housing the T9000 which conforms to the INMOS HTRAM specification. A
daughter-card with the DEC Alpha and its memory plugs onto the mother-card via a PCI
bridge.

A block diagram of the TransAlpha module is shown in Figure 7.

FIGURE 7 A block diagram of the TransAlpha module showing the main components and the
Mother-card - Daughter-card split.

1 or 2 Banks
of 32MB
DRAM

512KB
B-Cache
SRAM

SROM I/F

4 x 100 Mbps
Bidirectional

DS Links

FPGA

Registers
&

Control
Logic

INMOS
T9000

PCI Bus

PLX Technology
PCI 9060

Bus Bridge

Digital
Alpha/AXP

21066A

T9000/PCI Card

Alpha/AXP Card

128KB
Flash

512KB
SRAM

2 x
DMA

3v3 PSU
Generator

Control

Control

Control

10

The major components are:

• A 233MHz 21066A DEC Alpha with 512 KBytes of second level cache and 32 or 64
MBytes of DRAM. This chip has an on-chip PCI IO controller connected directly to a PCI
bus. A serialROM interface provides a path for the initialisation data.

• A 20 MHz T9000 Transputer with 512 KBytes of SRAM on its local bus.

• A PLX PCI 9060 chip acting as a bridge between the PCI bus and the local bus of the
T9000.

• An FPGA providing glue logic between the local bus of the T9000 and the PCI 9060 chip.
This is also responsible for initialising the Alpha chip.

Both processors have full access to all memory via either their own local bus or the PCI
bridge. Access is either via single word read and writes or via DMA transfers. DMA trans-
fers are performed by the PCI 9060 chip which has two independent DMA engines. These
are controllable from either processor. Interrupts may be sent to either processor from the
other via doorbell registers in the bridge chip and interrupts may also be sent on completion
of DMA transfers.

The Alpha processor runs no operating system or micro kernel which restricts code to a sin-
gle thread. It is programmed in C and a library of synchronous and asynchronous communi-
cation functions are provided to facilitate parallel computing. Message passing between the
Alpha and the rest of the network are performed by a server process on the Transputer. The
DMA engines in the 9060 transfer data between the Alpha’s memory and the T9000’s local
memory. The VCP in the T9000 sends and receives data on the DS links.

The results presented here (see Figure 8) demonstrate that data may be transferred from the
Alpha’s memory and sent out on the DS links very efficiently. A program on the T9000 initi-
ates a DMA transfer from the Alpha’s memory into buffers in an un-cached region of the
T9000’s memory. This data is then transferred out of the TransAlpha via the DS links. Two
buffers are defined so that the transfer of data from the Alpha memory into one buffer (via 70
Mbyte/s DMA transfer) may proceed concurrently with the transfer of data from the other
buffer out onto one of the T9000 links.

In this way the bandwidth achieved on the single virtual link (4.64 Mbytes/s) is almost the
same as that achieved sending directly from the T9000’s memory (4.74 Mbytes/s). With no
overlapping of the DMA and the link communication the maximum achievable bandwidth
would be 4.3 MBytes/s i.e. . It is also possible to drive multiple virtual links from
the TransAlpha.

It is possible to read data directly from the Alpha’s memory and send it out over the DS
links. This requires single word reads across the PCI bridge for which the effective band-
width is 2.5 Mbytes/s. The overhead incurred by initiating a DMA transfer is 6.4µs, but for
messages greater than around 30 bytes in length the gain in bandwidth across the PCI bus
makes DMA transfer the optimal mode.

1
70
------ 1

4.7
-------+

 1–

11

FIGURE 8 Bandwidth versus message size for TransAlpha to T9000 uni-directional traffic
over a single virtual link, connection via STC104.

The message passing overhead between the TransAlpha and a T9000 (connected via a
STC104) is 16µs, the overhead between two T9000s connected via a switch is 9.6µs. The
extra time required for the TransAlpha is the 6.4µs to initiate the DMA transfer.

A more detailed discussion of the TransAlpha module and its performance can be found in
reference [7].

4 A PowerPC driving a DS link PMC

A basic DS link PCI Mezzanine Card (PMC) has been designed and built by DESY Zeuthen
[8]. This card provides a DS link interface for embedded processors, for example, VME-
based systems. The main components of the PMC are: the S5933 PCI controller from
AMCC[9]; two 16 Kbyte FIFOs; the STC101 parallel to Data-Strobe-Link (DS link) con-
verter[10]; a MACH 445 by AMD. A schematic of the PMC is shown in Figure 9.

The VCP functionality of the T9000 must be emulated by the host CPU, i.e. the PowerPC.
The T9000 has been replaced by the STC101 link interface and a software emulation of the
VCP on the host processor.

0 500 1000 1500 2000

message size (bytes)

1.5

2

2.5

3

3.5

4

4.5

B
an

d
w

id
th

 (
M

b
y
te

s/
s) TransAlpha to T9000

T9000 to T9000

12

FIGURE 9 Schematic of the DS link PMC.

The PCI controller has both PCI target and bus master capabilities and has such features as
mail box registers and DMA functionality. Two 16 Kbyte FIFOs connect the 32-bit local bus
of the S5933 to the 8-bit Rx/Tx ports of the STC101 and allow PCI read/write burst accesses
without wait states.

The STC101 is a full duplex link interface operating at up to 100 Mbits/s. It provides pack-
etisation, framing and de-framing functionality. The packet size is programmable and with
packetisation enabled the maximum data block length is 4 Kbytes. All registers of the
STC101 can be accessed by single PCI read/write transactions via a 16-bit port.

A 100-pin Programmable Logic Device (PLD), the MACH 445-12, is responsible for the
overall control and is programmable via a 10-pin JTAG port on the front panel of the PMC.

Software has been developed to enable an application running on a PowerPC processor
embedded in a VME bus system to interface to the DS link. In particular, the software has
been developed for the RIO2 806x[11]. The library emulates the VCP of the T9000 in soft-
ware, implementing the same packet and message protocols as the VCP and allowing the
multiplexing of multiple virtual links onto a single physical link. Figure 10 shows the band-
width obtained between the PowerPC and a T9000 on a single virtual link, the maximum
rate achieved is below 1.4 Mbytes/s and the CPU is totally saturated.

Data is passed between the PowerPC and the Rx/Tx FIFOs by DMA transfer. In order to
avoid context switching overheads the STC101 does not interrupt the PowerPC on the
arrival of every packet. Instead the PowerPC polls the STC101 registers with the disadvan-
tage that a heavy load is placed on it’s CPU. The current implementation does not use multi-
ple virtual links concurrently.

Tx-FIFO

Rx-FIFO

16k x 8

16k x 8

8-bit

8-bit

16-bit

32-bit

32-bit

32-bit32-bit

PCI-Bus

Rx-Port

Tx-Port

C101

Reg.-Port
Control

Control Logic

PCI-Ctrl C101-Ctrl

PCI
Controller

(AMCC S5933)

(MACH 445-12)

Local-Bus

DS link

13

FIGURE 10 Bandwidth versus message size for PowerPC to T9000 uni-directional traffic over a
single virtual link, connection via a STC104, packet size is 32 bytes.

The achieved bandwidth on a single virtual link between two directly connected PMC mod-
ules has also been measured (see Figure 11). The restriction of a maximum packet length of
32 bytes (imposed by the T9000) is now removed, so results for different packet lengths are
shown. For comparison, the performance of two directly connected T9000s with a single vir-
tual link reaches 6.4 Mbytes/s. The PowerPC implementation reaches this figure using 1024
byte packets, but for short messages (less than 1024 bytes) performance is greatly reduced. It
should also be noted that the PowerPC is fully saturated for all measurements.

It is clear from the PowerPC results that to emulate the functionality of the VCP in software
on the host processor does not give good communications performance and fully loads the
CPU.

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Message Size [Bytes]

B
an

dw
id

th
 [M

B
yt

es
/s

]

14

FIGURE 11 Bandwidth versus message size for PowerPC to PowerPC (directly connected)
over a single virtual link whilst varying the packet size

5 Conclusions: what has been learned?

The TransAlpha module has shown that it is still possible to exploit the efficient
communications performance of the T9000 when it is used as a communications co-
processor. The throughput obtained is close to that for the T9000 stand-alone and there is a
small increase in the message passing overhead.

The PowerPC implementation has shown that a software implementation of the VCP func-
tionality puts a significant load on the host processor with inefficient communications per-
formance.

Experience with the T9000 has shown the importance of low message passing overheads,
high data throughput and low CPU loading.

Low message passing overheads are favoured by:

• An efficient interface between the user process and the network interface by using a
dedicated communications processor (i.e. the VCP).

• Low process context switching times by using a hardware scheduler.

High data throughput is favoured by:

• Sufficient bandwidth between host memory and the network interface.

• Reducing or avoiding memory to memory copies.

0 500 1000 1500 2000 2500
0

1000

2000

3000

4000

5000

6000

7000

Message Length

B
an

dw
id

th
 (

K
by

te
s/

s)

Packet size 32 bytes

Packet size 64 bytes

Packet size 512 bytes

Packet size 256 bytes

Packet size 1024 bytes

Packet size 128 bytes

(bytes)

15

• The use of multiple DMA channels to drive multiple virtual links over multiple physical
links.

Low host CPU loading is favoured by:

• Reducing or avoiding memory to memory copies.

• Low interrupt overheads.

• Light weight protocols implemented in the VCP.

The T9000 has performed well in these areas, with the exception of a poorly designed exter-
nal memory interface and a low clock speed. In addition, the acknowledge scheme of the
T9000 restricts the per virtual link throughput. The above issues are addressed on a com-
modity computing platform in part 3 using DS link interface hardware described in part 2.

References

[1] IEEE Std. 1355,Standard for Heterogeneous Inter-Connect (HIC). Low Cost Low Latency
Scalable Serial Interconnect for Parallel System Construction. IEEE Inc., 1995.

[2] The T9000 Transputer Hardware Reference Manual. Inmos Ltd., Inmos document number 72
TRN 238 01.

[3] R. Heeley,Real Time HEP Applications using T9000 Transputers, Links and Switches, Ph.D.
Thesis, The University of Liverpool, October 1996.

[4] S.Fisher, Low Level Benchmarking of the T9000 Transputer, M.Sc dissertation, the University
of Liverpool, February 1995.

[5] The STC104 Asynchronous Packet Switch, Data Sheet, April 1995, SGS-Thomson Microelec-
tronics.

[6] Networks, Routers and Transputers, edited by M.D. May, P.W. Thomson and P.H. Welch, pp.
90, ISBN 90 5199 129 0.

[7] T.C. Carden, R.W. Dobinson, S. Fisher, P.D. Maley, High Performance Computing Nodes for
Real Time Parallel Applications, Nuclear Instruments and Methods in Physics Research A, 394
(1997) 211-218.

[8] For more information contact K-H Sulanke, DESY Zeuthen, Platanenallee 6, 15738 Zeuthen.
Tel. +49-(0) 33762-77207.

[9] S5930-S5933 PCI Controllers, Applied Micro Circuits Corporation.

[10] The STC101 Parallel DS Link Adapter, SGS-Thomson Microelectronics, June 1994.

[11] RIO2 8061 and RIO2 8062 PowerPC based RISC I/O Board, Technical Manuals, CES.

D 3.1.1 Report on interfacing Commodity
processors to IEEE1355 DS links

PART 2: The architecture of the hardware interfaces

1 Introduction..2
2 Design Issues ...2

2.1 The Bus ..2
2.2 Bus Interface ..2
2.3 Serial Link Interface ...2
2.4 Glue Logic..2
2.5 Platform Design..3

3 DSNIC Architecture ...3
3.1 Design Details ..4
3.2 PCI interface...4
3.3 DS-LINK Interface ...4
3.4 Memory..4
3.5 FPGA ...4
3.6 Clocking...4
3.7 Serial Memory..5
3.8 Spare pins...5
3.9 Mechanics ..5

4 DSPMC Architecture ...6
4.1 PCI interface...6
4.2 DS-LINK Interface ...6
4.3 Memory..7
4.4 FPGA ...7
4.5 Clocking...7
4.6 Serial Memory..7
4.7 Spare pins...7
4.8 Mechanics ..7

2

1 Introduction

The hardware platforms in this task were developed to provide access to the widest
possible market for DS link technology. This was done by adopting the PCI standard
to address both PC and workstation markets and its mezzanine equivalent PMC for
the embedded systems markets of VME and Compact-PCI. This part of the
deliverable describes the design choices and implementation of the two platforms.

2 Design Issues

2.1 The Bus
It was decided to exploit the large market share of the PCI bus to facilitate the
connection of heterogeneous processors via DS links. PCI in its original form is the
interface of choice for the IBM PC compatible platforms for commodity processors.
Motherboards are available with processors from: Intel, AMD, Cyrix, DEC, Motorola
etc.
 The industrial market also profits from the PCI albeit in a different mechanical form
factor, the PMC mezzanine bus. PMC mezzanine sockets are provided on many VME
and COMPACT-PCI processor modules and used for standard or application specific
I/O. These CPU modules are available from many different manufacturers and
employ a variety of processors such as Intel, SPARC, Power PC, ARM etc.

2.2 Bus Interface
Having chosen the bus it was decided to employ a known and existing interface chip
to limit the risks. The choice was made to use an AMCC design. This was a second
generation component whose known bug list did not compromise any of the required
design functionality.

2.3 Serial Link Interface
The STC101 component was the only available DS link interface device available.

2.4 Glue Logic
For compute systems doing heavy I/O the studies in Part 1 showed that the system
performance is enhanced by using lightweight protocols and moving functionality
away from the host CPU towards the I/O interface itself. The full T9000 I/O
functionality could not possibly be added on to a processor having a different
architecture due to the crucial role of the hardware scheduler.
This leaves a sliding scale of options available to the network interface designer. The
cheapest and most inefficient approach uses a host based ‘software only’ solution.
The inefficiencies involved however would make it difficult to find a market for such
a solution. The most performant (and expensive) approach would be an ASIC that
incorporated fixed logic for time critical operations together with programmable
processing for flexibility. The cost of this is clearly beyond consideration.
What is sought then is some point at which sufficient performance can be obtained
from the interface while remaining within a marketable cost.
It was decided then not to incorporate a communications processor but to see to what
extent lightweight protocols could be accommodated using Field Programmable Gate

3

Array (FPGA) technology. Such devices are available over a wide range of capacity,
speed and cost. At the time of design, devices were available with from 30,000 to
50,000 gate capacities, routed gate delays from 27nS down to 16 nS and costs from
$80 to $480
During the architectural design phase there were requests for protocol specific
operations such as packet concatenation and swinging buffers. Fast memory was
added to the FPGA to cater for these functions.
The final architecture then provided for a range of price/performance options that
would fulfill the requirements of a performant DS link network interface. We chose
the largest such device available in order to explore the flexibility that this offered the
design process. Just what the attainable performance limits were, is a subject of the
research described in Part 3.

2.5 Platform Design
A PCI based design meeting the above requirements had been done independently of
the ARCHES project as a joint collaboration between CERN and the INFN (Rome).
This platform, named the DS Network Interface Card (DSNIC) was used in Arches to
develop the software and firmware required for a PCI based host to exploit the
message passing capabilities of DS links.
To meet the requirements of the embedded market a second interface board based on
PMC mechanics was designed and built within Arches using the same approach as
that employed in the DSNIC. The mechanical and power constraints of the PMC form
factor required a few design changes, notably the use of only one DS link. Firmware
addressing just one link can be used on both boards with only a simple re-compilation
to account for the different packaging pin-outs.

3 DSNIC Architecture
The architecture is shown in Fig 1.

S
P
A
R
E

P
I
N
S

Memory

DataAddress

AMCC
PCI

Interface

ALTERA
FLEX
FPGA

32 bit PCI BUS

STC101
DS-DE link

TX/RX

DS-DE link

TX/RX STC101

Fig 1. THE DSNIC Architecture Block Diagram

4

3.1 Design Details
The design goal was first to provide host control to the platform through some known
interface chip (for security) and secondly to provide outputs in the form of one or two
DS links. For simplicity there would be no embedded processor. All the intelligence,
control, and ‘glue’ functionality would be subsumed into one large programmable
gate array. This approach provided for a large degree of flexibility with the possibility
of maximum hardware performance provided that the resources could be sufficiently
exploited. It also ensured a simple hardware design and minimised design and
development risk. The functionality and performance of the platform is therefore
totally under the control, and limits, of the firmware loaded into the FPGA.

3.2 PCI interface
A commodity interface chip, the AMCC 5933, provides the necessary PCI master,
slave, DMA, interrupt and mailbox facilities between the onboard resources and any
PCI bus host. Details of the chip can be found at:
http://www.amcc.com/Products/PCI/S5933.htm
All the ‘user-side’ data and control lines are handled by logic implemented in the
FPGA.

3.3 DS-LINK Interface
There are optionally two interfaces to DS links using the STC101 Parallel to Serial
link drivers. Details of the chip can be found at:
http://www.hensa.ac.uk/parallel/vendors/inmos/ieee-hic/data/C101-04.ps.gz
The appropriate differential transceivers and common-mode rejection chokes are
incorporated on-board to provide a secure physical layer for data transmission. Access
to the STC101’s is entirely controlled from logic implemented in the FPGA.

3.4 Memory
A bank of 128Kbyte of SRAM is optionally available and configured as byte
writeable, byte readable 64 bits wide by 16Kwords deep. Access to the memory is
entirely controlled from logic implemented in the FPGA.

3.5 FPGA
All the onboard resources are controlled from the Altera FLEX 10K50 family in PGA
packaging. Details of the chip specifications can be found at:
http://www.Altera.com/html/products/f10k.html
There is sufficient board space to permit the mounting of a ZIF socket for easy speed
upgrades. The FPGA can be optionally initialised from:
• Serial Eprom on power up
• Parallel Eprom on power up.
• Parallel Byte Blaster ™ plug
• Software control over PCI bus (requires three wire patch to pcb)

3.6 Clocking
The PCI interface and the FPGA run at 33MHz from the bus clock. The STC101’s
run at a nominal 50MHz.

5

3.7 Serial Memory
There are separate serial memories to initialise the BIOS variables of the PCI
interface and the initial conditions of the Altera FPGA.

3.8 Spare pins
 The FPGA has 30 spare pins if both STC101’s are mounted and 130 spare pins if the
second C101 is not mounted. All these spare pins are brought out to headers for
exploitation in the patch area of user defined functionality. The intention here was to
provide connectivity for a mezzanine processor board should the application need
arise.

3.9 Mechanics
 The electronics are mounted on a full-length PCI form factor board. Users should be
aware that on some PC compatible motherboards this restricts the freedom of choice
of available PCI slots since the long board may be in conflict with motherboard
elements such as heatsinks, fans, memory subsystems etc.

A picture of the mounted and working board (without a front panel) is shown in Fig 2.

Fig 2 DSNIC photograph

6

4 DSPMC Architecture
The architecture of the DSPMC, very similar to the DSNIC, is shown in Fig 3. This
common approach permits the easy migration of software and firmware from one
platform to the other.

Fig 3 DSPMC Architecture Block Diagram

4.1 PCI interface
A commodity interface chip, the AMCC 5933, provides the necessary PCI master,
slave, DMA, interrupt and mailbox facilities between the onboard resources and any
PCI bus host. Details of the chip can be found at:
http://www.amcc.com/Products/PCI/S5933.htm
All the ‘user-side’ data and control lines are handled by logic implemented in the
FPGA.

4.2 DS-LINK Interface
There is one DS link interface the STC101 Parallel to Serial link driver. Details of the
chip can be found at:
http://www.hensa.ac.uk/parallel/vendors/inmos/ieee-hic/data/C101-04.ps.gz
The appropriate differential transceivers and common-mode rejection chokes are
incorporated on-board to provide a secure physical layer for data transmission. Access
to the STC101 is entirely controlled from logic implemented in the FPGA.
Given the uncertainties of continued support for the STC101, pcb tracking has been
provided from the FPGA to solder pads at the serial input and outputs of the STC101.
It would thus be possible to subsume the functionality of the STC101 into the FPGA
in the case that the chip was no longer available.

Memory

DataAddress

AMCC
PCI

Interface

ALTERA
FLEX
FPGA

32 bit PCI PMC BUS

DS-DE link

TX/RX STC101

7

4.3 Memory
A bank of 128Kbyte of SRAM is optionally available and configured as byte
writeable, byte readable 64 bits wide by 16Kwords deep. Access to the memory is
entirely controlled from logic implemented in the FPGA.

4.4 FPGA
All the onboard resources are controlled from the Altera FLEX 10K50 family in BGA
packaging. Details of the chip specifications can be found at:
http://www.Altera.com/html/products/f10k.html
The FPGA can be initialised under software control over the PCI bus.

4.5 Clocking
The PCI interface and the FPGA run at 33MHz from the bus clock. The STC101 runs
at a nominal 50MHz.

4.6 Serial Memory
There is a serial memory to initialise the BIOS variables of the PCI.

4.7 Spare pins
 Some of the spare pins of the FPGA are brought out to test-point pads to assist in any
needed firmware debugging or monitoring.

4.8 Mechanics
 The components are mounted on a PMC double width board. A photograph of the
DSPMC can be seen in Fig.4.

Fig 4 DSPMC photograph

D 3.1.1 Report on interfacing commodity
processors to IEEE 1355 DS links

PART 3: The design and implementation of the software and firmware

Contents

1 Introduction 1

2 Switched IEEE 1355 DS link networks 1

3 DSNIC board 1

4 Choice of platform 2

5 Communication API 2

6 Protocol design 3
6.1 Splitting messages into packets 3
6.2 Optimising throughput . .. 4
6.3 Reliability and end-to-end flow control .. 4
6.4 Transmission overhead and optimal packet size 5

7 System design 6
7.1 Firmware . 6
7.2 Host software . 7

8 Measurements 7
8.1 Throughput 8
8.2 Latency . 9
8.3 Interrupt packet handling . 10
8.4 Processor load . 11

9 Analysis 14
9.1 CPU time for handling a packet 14
9.2 Off-loading to a dedicated processor . 14
9.3 Interrupt service time 15
9.4 Interrupt overhead . 15

10 Performance improvements 15
10.1 Modelling the CPU load .. 16
10.2 Using the DSNIC board for packet handling 17
10.3 Low-latency context switches 17

11 Conclusion 17

CERN / The design and implementation of the software and firmware 1

1 Introduction

In part 1 we examined the baseline performance of DS links and identified the elements
needed for their sucessfull exploitation. In part 2 we considered the hardware possibilities
and limitations to construct cost effective yet flexible network interface cards that could attain
attractive levels of throughput and latency. This part of the deliverable addresses the questions
of which communication paradigms and protocols can best exploit the available resources and
how best to partition the functionality between software in the host processor and firmware
in the interface. The API and protocol design is explained and was implemented. Measured
results are presented and discussed.

2 Switched IEEE 1355 DS link networks

IEEE 1355 DS links are bidirectional flow-controlled point-to-point serial links running at
100 Mbaud. DS link networks can be built using the 32 port SGS Thompson C104 packet
switch[17]. This chip uses wormhole routing to route DS link packets; preloaded routing
tables determine the packet’s destination port on the basis of the packet header, as soon as this
header has been received by the source port. The C104 doesnotuse a bus based architecture,
instead a non-blocking crossbar is implemented to route packets. It has a switching latency
of 1 �s.

As part of the Macram´e Esprit project, CERN has constructed a very large network
testbed[21] based on DS links and C104 switches. This has allowed the investigation of
latency and throughput for many different traffic patterns and network topologies up to 1024
terminal-nodes.

3 DSNIC board

A PCI based DSNIC board[3] has been developed jointly between CERN and INFN[11]. The
wide acceptance of the PCI bus standard allows the board to support many present and future
processors.

FPGA
C101

AMCC
DS

DSC101

RAMDSNIC

PCI

Figure 1: The DSNIC board.

The board, see Figure 1, contains the AMCC 5933 PCI interface chip, two SGS Thomp-
son C101 parallel to serial DS link interfaces[16], 256 Kbytes RAM, and the Altera FLEX
10K50 Field-Programmable Gate Array (FPGA). The spare pins of the FPGA are brought
out to headers to allow hardware extensions, e.g., via a daughter board. The flexibility of
the FPGA allows part of the communication functionality to be off-loaded to the board; this
functionality is thus spread over the board’s firmware and the controlling software, i.e., the
driver, executed by the host CPU.

2 CERN / The design and implementation of the software and firmware

Table 1: The communication API.
Basic CSP constructs

int Send(NI* ni, int vl, char* address, int length)

int Receive (NI* ni, int vl, char* address)

int WaitAndSelectFirst (NI* ni, int* vl nrs, int size)

int WaitAndSelectRandom (NI* ni, int* vl nrs, int size)

int SelectFirst (NI* ni, int* vl nrs, int size)

int SelectRandom (NI* ni, int* vl nrs, int size)

Non blocking communication

int StartSend (NI* ni, int vl, char* address, int length, Request* r)

int StartReceive (NI* ni, int vl, char* address, Request* r)

int Completed (NI* ni, Request* r)

int Complete (NI* ni, Request* r)

Asynchronous communication and its non blocking variant

int ASend(NI* ni, int vl, char* address, int length)

int StartASend (NI* ni, int vl, char* address, int length, Request* r)

Message memory handling

void* Allocate (NI* ni, int size)

void Free (NI* ni, void* memory)

Initialisation and termination
int Open(NI* ni, char* resource)

void Close (NI* ni)

void SetUpVirtualLink (NI* ni, int nr, int buffer size,

dword remote header, int remote header size,

int remote nr, int remote buffer size)

4 Choice of platform

We use high-performance commodity processors, like the DEC Alpha, Power PC, or Pen-
tium, to perform real-time analysis because of their very good price/performance ratio. For
the same reason, we use the Linux Operating System (OS): it is freely available, is highly
reliable, and offers POSIX compatible real-time features. Our platform consists of 200 MHz
Pentium Pro PCs running the Linux 2.0.27 OS.

5 Communication API

We base our parallel computer on Communicating Sequential Processes [8] (CSP). We use
OS processes, i.e., Linux processes or threads, for the CSP processes. The CSP channels
are virtual links between these processes. The Application Programming Interface (API),
see Table 1, provides full CSP communication functionality, including facilities for active
channel selection.

We add non-blocking communication to the blocking CSP interface, since non-blocking
communication allows concurrent computation and communication without task switching.
This improves the performance of the DSNIC, since task switching is a time consuming op-
eration in general purpose OSs. The definition of blocking and non-blocking corresponds to
the definition in the Message Passing Interface[12] (MPI) standard. In non-blocking com-
munication, the send or receive call may return before the operation is completed, and before
the user is allowed to re-use resources, such as buffers, specified in the call. In blocking com-

CERN / The design and implementation of the software and firmware 3

Direction of packets

Data packet

= Acknowledge packet: number of acked packets (0-127)

= Data packet: EOM/EOP2

= Data packet: last packet (1) or not (0)

Acknowledge packet

= Acknowledge packet: credit (1) or not (0)

= DS link routing header

= Payload

= Virtual link number (0-65535)

= Acknowledge packet: EOP/EOP1

= Data packet: packet number (0-127)

Figure 2: The format of data and acknowledge packets.

munication, returning from a send or receive call indicates that the user is allowed to re-use
resources specified in the call.

Furthermore, we add asynchronous communication to the synchronous CSP interface. In
synchronous communication, the sender and receiver processes not only exchange a message,
but they also synchronise during this communication: the send and receive operations only
terminate after they both have been executed. In asynchronous communication, the send and
receive operations do not necessarily synchronise: the send operation may terminate even
before the receive operation has been executed, by exploiting the use of buffers. By using
buffers on the receiving host, asynchronous communication may result in latency improve-
ments, since the message data may already have arrived at the destination host even before
it is requested by the receiving process. The API allows the user to specify the amount of
buffer space on the receiving host for each virtual link.

To avoid memory-to-memory copying on the host CPU, we make the DSNIC collect and
deposit the message data directly in user space. Direct user space access puts constraints
on the kind of memory that can be used: the memory must be locked, word aligned, and
accessible via Direct Memory Access (DMA). Therefore, the API is extended with special
allocation and release functions for message memory.

6 Protocol design

The IEEE 1355 standard describes the communication protocol up to the packet level: a
DS link packet consists of a destination address, payload, and a packet delimiter. At the
application level, processes need to be able to exchange messages. The gap between these two
interfaces must be covered by a communication protocol. We try to optimise the performance,
i.e., network latency and throughput, induced by the protocol.

6.1 Splitting messages into packets

The length of a message is not limited; it is determined by the application process. Messages
must be communicated by exchanging packets. Using large packets in wormhole routed
networks results in a performance penalty in both network latency and available network
throughput due to network congestion. The impact of the packet size on the available network
throughput has been shown in [6]: the maximum network throughput in a 512 end-node

4 CERN / The design and implementation of the software and firmware

0

20

40

60

80

100

0 20 40 60 80 100 120 140

T
ra

ns
m

is
si

on
 o

ve
rh

ea
d

(%
)

Packet size (bytes)

Figure 3: The transmission overhead against packet size for message length 1000.

Clos network drops by 22 % if packet size 1024 is used instead of 16. Section 6.4 presents
more detailed network performance measurements that are related to the characteristics of
the DSNIC protocol. To avoid the performance penalty which occurs if each message is
transmitted as a single packet, we have decided to split up each message into a number of
limited-size packets. Each message is sent as a number of maximum size packets, and one
last packet, which is smaller than or as large as the maximum size.

6.2 Optimising throughput

The protocol supports the adaptive routing capabilities of the C104 switch to improve the
network throughput performance[6]. However, adaptive routing can cause packets of the
same message to arrive out-of-order at their destination.

The communication protocol of the T9000 transputer[18] uses a strict acknowledgement
scheme to avoid out-of-order packet arrival. This scheme limits the maximum message
throughput[7] due to the latency of the acknowledge. Measurements have shown that two
T9000 transputers, interconnected via one C104, can achieve a throughput of 4.7 Mbytes/s
over a single virtual link. Interconnecting them via five C104s, which increases the latency
of the acknowledge by 4�s, reduces the maximum throughput to 2.3 Mbytes/s.

We use a sliding window protocol[19], together with an acknowledgement scheme with-
out the limit in maximum throughput: each acknowledgement packet can acknowledge a
sequence of packets. The protocol does not use piggybacking because we do not expect a
performance gain from it, since DS link networks perform well for small packets, and the
protocol requires only a few acknowledgements per message.

6.3 Reliability and end-to-end flow control

The protocol should provide reliable communication. The Macram´e testbed has proven that
the per-link flow control, together with well designed hardware[13], can result in very reliable
systems: a maximum Bit Error Rate (BER) of9:6� 10�18[21] has been reported. We decide
to accept the maximum BER of9:6 � 10�18 for our purposes. The consequence is that the
occurrence of an error in the network will result in unspecified system behaviour. We assume
that the DS network does not to lose or corrupt any data, however, we should also avoid

CERN / The design and implementation of the software and firmware 5

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

10 100 1000

M
ax

im
um

 N
et

w
or

k
T

hr
ou

gh
pu

t (
G

by
te

s/
s)

Packet Size (bytes)

Figure 4: The maximum network throughput versus packet size.

data being lost by the message receiver due to overflowing buffers. Therefore, a means of
end-to-end flow control is required.

We choosenot to implement end-to-end flow control via the DS per-link flow control,
holding data reception as soon as the buffers are full, since this blocks the network until the
receiver executes a receive operation, and therefore leads to poor network performance and
possibly deadlock. We use credit based end-to-end flow control: the receiver allows a sender
to start message transmission by sending it a credit.

6.4 Transmission overhead and optimal packet size

We define the transmission overhead to be the number of bits, communicated for a message,
that do not represent the data bits of the message. In particular, packet headers and acknowl-
edge packets determine the transmission overhead. Most forms of serial communication use
encoding, e.g., adding stop bits, to ensure that the receiving side correctly interprets the serial
bit stream. DS links use an encoding scheme that extends each byte, 8 bits, to a 10 bit token.
The transmission overhead is therefore at least 20 %.

Figure 2 shows the format of data and acknowledgement packets that we use for the
DSNIC protocol. It shows that, apart from the DS link routing header, three characters are
used for protocol specific information, independent of the payload size. Together with the
acknowledgement scheme, this allows us to calculate the transmission overhead for differ-
ent packet sizes. Figure 3 shows the transmission overhead against packet size, or, more
precisely, against payload size, for sending a 1000 byte message. The packet size strongly
influences the required number of packets and packet headers, and thereby the transmission
overhead.

Figure 4 shows the influence of the packet size on the maximum network throughput for
a 512 end-node Clos network under random traffic. This graph shows an optimal network
throughput for packet size 28. For packets smaller than 28, the network throughput drops
due to the domination of the transmission overhead. For packets larger than the optimum, the
network throughput becomes worse due to network congestion.

The header of each packet needs to be processed by the DSNIC. This processing requires
time. Using a small packet size, such as the optimal 28, requires a lot of processing to
achieve full bandwidth communication. To keep this processing from becoming the system’s

6 CERN / The design and implementation of the software and firmware

PCI
c101

mux comoutoutfifo

comininfifo

headlenfifo

ackfifo

flush

passthru
c101

interface

Figure 5: Block diagram of the firmware.

bottleneck, we choose not to fix the packet size, but to make it adaptable so that its influence
on the performance of the DSNIC can be investigated. We only support powers of two for
the packet size to accommodate the implementation.

7 System design

The DSNIC should offer the described API to processes, and implement communication via
the described protocol. This functionality must be distributed over the FPGA firmware and
the host software.

Measurements have proven that the maximum throughput cannot be reached if the host
CPU is used to transfer every single byte of a message via register I/O. The firmware therefore
minimally needs to offer a packet transfer interface. Being unable to estimate the develop-
ment time and resource utilisation, i.e., the required number of Logic Cells (LCs), for com-
plex firmware functionality, made us decided to initially only implement the packet transfer
functionality in firmware.

A well-known problem in interfacing is memory-to-memory copying. Memory-to-mem-
ory copying is an expensive and often nonessential operation which causes CPU loading and
latency. Consequently, we choose to avoid it: message data must be DMA-transfered directly
to the right address in a process’ memory.

7.1 Firmware

A block diagram of the firmware components is shown in Figure 5. Two main data flows can
be recognised: data reception and data transmission.

Comin takes care of packet reception, it splits packet headers from packet data. The
headers are sent to theheadlenfifo, and the data is sent to theinfifo. Apart from splitting,
comin also counts the length of the packet, which is known as soon as the end-of-packet
character has been received. This length is also sent to theheadlenfifo. Data in theheadlenfifo
is delivered to an AMCC mailbox, which can generate an interrupt. On a header reception
interrupt, the host CPU can determine destination address of the packet data and establish the
receiving DMA, thereby avoiding memory-to-memory copying.

To avoid a store-and-forward mechanism, the receiving DMA must be established as
soon as the header of the packet has been received. To set up a DMA, the length of the DMA
transfer must be known beforehand. Thereforeflush pads out each packet to the full packet
size, even though less data is communicated over the DS link. DMAs can now be set up
immediately on header reception, using the full packet size.

Comouttakes care of sending data and acknowledge packets. If data is available in both
theackfifo and theoutfifo, data in theackfifo will be selected. This way, acknowledgements

CERN / The design and implementation of the software and firmware 7

can bypass enqueued data packets.
In order to hide the reaction latency of the software driver, there are FIFOs on both the

receiving and the transmitting side. The buffer size of 1 Kbyte was chosen because it fits well
into the internal resources of the Altera FPGA. A 1 Kbyte FIFO can hide a reaction latency
up to 100�s, which should be sufficient.

Mux multiplexes the AMCC to all the FIFOs so that interleaved transmission and recep-
tion is possible.Passthruprovides access to the registers of the C101s. The registers of both
C101s are accessible via register I/O. The firmware only supports one C101 efficiently, i.e.,
with a DMA driven interface.

7.2 Host software

The host software consists of an interface library that provides the API, as shown in Table 1,
to processes. This library communicates via system calls to a driver, resident in the ker-
nel, that implements all the message communication functionality, using the packet transfer
interface provided by the DSNIC board.

We choose to make the software interrupt driven and to deschedule processes performing
blocking communication, in order to allow concurrent computation and communication.

The host software should take care of the communication of every packet, of every mes-
sage, for any process, over any virtual link. These aspects make the host software complex.
Using an Object-Oriented[15] approach helped in the development of this software.

By only using facilities that are common in every operating system that offers real-time
facilities, such as process scheduling, memory locking, and interrupt handling, we facilitate
portability of the DSNIC software to other operating systems with real-time features, as-
suming they allow access to a PCI bus. Furthermore, using only standard kernel facilities
makes the DSNIC an extension of the OS: processes arenot restricted in the use of other OS
facilities, e.g., storage facilities or other communication facilities.

8 Measurements

We have used two benchmarks: Comms1 and Comms2. These benchmarks are based on
Parkbench[9]. For both benchmarks, two Pentium Pro 200 MHz PCs, each running a com-
munication process, are interconnected via the DSNIC with a single DS link. Not using a
large DS network ensures that we are able to measure the process-to-process communication
performance without network influence.

In both Comms1 and Comms2, the processes bounce messages of a certain length. For
each message length, we obtain the process-to-process message latency by measuring the
message bounce time and halving it. The throughput is obtained by dividing the message
length by the message latency. In Comms1, the two processes, using blocking communi-
cation, bounce a single message. The link is therefore mainly used unidirectionally. In
Comms2, the two processes exchange messages simultaneously, using both blocking and
non-blocking communication. The link usage is therefore bidirectional. For an ideal bidi-
rectional link, the maximum throughput in Comms2 is twice the maximum throughput in
Comms1.

We have performed the Comms1 and Comms2 benchmarks for the following packet sizes:
8, 16, 32, 64, 128, 256, 512, 1024, 2048, and 4096. To ensure readability, we only show the
results for packet sizes 8, 1024, and 4096 in the graphs. As a reference, we also show the
benchmark results of the T9000 transputer. These results have been obtained on two 20 MHz
T9000 transputers, that are interconnected via a C104 switch network. The communication

8 CERN / The design and implementation of the software and firmware

0

1

2

3

4

5

6

7

8

9

1 10 100 1000 10000 100000 1e+06

T
hr

ou
gh

pu
t (

M
by

te
s/

s)

Message Length (bytes)

T9000 (1 C104)
T9000 (5 C104s)

Packet Size 8
Packet Size 1024
Packet Size 4096

Figure 6: Throughput versus message length for Comms1 for various maximum size packets.

processes on the two T9000 transputers communicate via a single virtual link. The T9000
transputer uses a packet size of 32 bytes.

8.1 Throughput

Figure 6 shows the throughput versus message length for Comms1 for the three packet sizes
and the T9000 transputer. The maximum throughput reached for long message lengths is
8.3 Mbytes/s. This is less than the maximum C101 throughput of 9.2 Mbytes/s. The reason
for this is a limitation in the C101 receive FIFO. Only in some very specific cases, the limi-
tation allows achieving a throughput higher than 8.3 Mbytes/s. The peaks in the 4096 packet
size graph show such a situation.

The minimal packet size required to achieve the maximum throughput in Comms1 is 512.
Using packet size 256 the 8.3 Mbytes/s is nearly reached. The other packet sizes are too small
to be handled efficiently enough to reach the maximum throughput.

The plots in the graphs show a sawtooth pattern. This pattern is related to the packet
size: if the message length exactly fits within a number of data packets, the packet handling
overhead is relatively low, and therefore the throughput will show an optimum. If, however,
the message length is one byte longer, an extra data packet is needed, so the packet handling
overhead will be relatively high, which causes a throughput dip.

The maximum Comms1 throughput achieved on two T9000 transputer depends on the
network latency, caused by the C104 switches that interconnect the two transputers. Directly
interconnecting the T9000 transputers will result in an increase of maximum throughput of
about 25 %. Due to the use of a different acknowledgement scheme, interconnecting two

CERN / The design and implementation of the software and firmware 9

0

2

4

6

8

10

12

14

16

18

1 10 100 1000 10000 100000 1e+06

T
hr

ou
gh

pu
t (

M
by

te
s/

s)

Message Length (bytes)

T9000 (1 C104)
T9000 (5 C104s)

Packet Size 8
Packet Size 1024
Packet Size 4096

Figure 7: Throughput versus message length for Comms2 for various maximum size packets.

DSNICs via a number of C104s does not affect the maximum throughput, it only affects the
latency.

Figure 7 shows the throughput versus message length for Comms2. As expected, the
maximum throughput reached for long messages is 16.6 Mbytes/s: twice the 8.3 Mbytes/s
Comms1 throughput. This proves that the DSNIC can fully exploit the bidirectional band-
width of DS links.

The minimal packet size required to achieve the maximum throughput in Comms2 is
512. Packet size 256 definitely does not achieve the maximum throughput. Considering the
Comms1 situation, this is to be expected: since the throughput is twice as high, the packet
size must roughly be doubled in order to keep the CPU load the same.

8.2 Latency

Figure 8 shows the Comms1 latency versus message length. For message length 1, the graph
shows the minimal latency. The minimal latency for all packet sizes up to 512 bytes is 67�s.
The minimal latency for 1024, 2048 and 4096 sized packets is higher. Similar results have
been obtained for Comms2.

The higher latency for large packets, see Figure 5, is caused by the padding offlush. This
overhead can be removed by modifying the protocol, so that the packet’s header contains the
packet’s length. This change will make the minimal latency 67�s, independent of the packet
size.

The T9000 transputer has a minimal Comms1 latency of 7.4�s; two directly connected
T9000 transputers will even improve on this. The factor of 10 difference shows the per-

10 CERN / The design and implementation of the software and firmware

10

100

1000

10000

100000

1 10 100 1000 10000

La
te

nc
y

(u
s)

Message Length (bytes)

Packet Size 8
Packet Size 1024
Packet Size 4096

Figure 8: Latency versus message length for Comms1 for various maximum size packets.

formance lost due to the use of standard OS facilities, implemented in software, instead of
dedicated hardware, i.e., the hardware communication system and the hardware scheduler.

8.3 Interrupt packet handling

In the DSNIC, an interrupt handler takes care of all the packet handling to communicate
messages. Figure 9 shows for Comms1 the number of packets handled per interrupt versus
message length. The results in this graph are strongly related to the way in which the in-
terrupt handler operates. The interrupt handler is activated by a number of hardware events,
e.g., FIFOs, or mailboxes, becoming full or empty. The interrupt handler could terminate
as soon as the events that interrupted the processor are handled. However, in order to im-
prove performance, the interrupt handler, after having handled the events, checks whether
any other hardware events need handling. If so, it handles them, and checks again for new
events. Therefore, the interrupt handler can handle many packets each time it is called.

Handling many events per interrupt improves performance, since it avoids unneccesary
processor interrupts. However, if many events are available, the interrupt handler is active for
a long time. During this time no other interrupts can be handled, which has proven to cause
problems to the timer interrupt. To avoid interrupt handling that takes too long, we limit the
maximum number of events handled per interrupt. The effect of this is shown by the limit of
about 70 handled packets per interrupt for the smaller packet sizes.

In Figure 9 two stable states can be identified,manyandone: the statemany, handling
the maximum number of packets per interrupt, and the stateone, handling one packet per
interrupt. The small packet sizes result in such a large event handling frequency compared

CERN / The design and implementation of the software and firmware 11

1

10

100

1 10 100 1000 10000 100000 1e+06

P
ac

ke
ts

 H
an

dl
ed

 p
er

 In
te

rr
up

t

Message Length (bytes)

Packet Size 8
Packet Size 1024
Packet Size 4096

Figure 9: Number of packets handled per interrupt versus message length for Comms1 for various maximum
size packets.

to the event handling time, that statemanyis reached. The large packet sizes result in such a
low event handling frequency that stateoneis reached.

The larger packet sizes show a drop off at message length 270 to about 1 packet handled
per interrupt. So, if a message of more than 270 bytes is sent, the interrupt handler only
handles one packet, because at the end of the handler no new events are available. Handling
one packet on interrupt therefore takes as much time as it takes to communicate a 270 byte
packet. This drop in efficiency of the interrupt handler also causes the latency peak and
throughput dip at message length 270, see Figure 8 and Figure 6.

Figure 10 shows the number of packets handled per interrupt versus message length for
Comms2. In Comms2, we are dealing with bidirectional communication. Therefore, three
stable states can be identified, the two states from Comms1, i.e., statesmany andone, and
one extra state, statetwo. In statetwo, two packets are handled per interrupt, an outgoing and
an incoming packet. Medium sized packets, such as packet size 1024, end up in statetwo.

8.4 Processor load

The communication results can only be put into perspective if the communication load to the
processor is known. Consequently, we have also performed load measurements. The load is
measured by concurrent execution of a communication task and a computation task on each
of the two processors. The computation task measures the remaining processor power. It
does this by increasing a counter in memory. By measuring the counter increase per second
on an unloaded system beforehand, we can determine the processor load in a system with

12 CERN / The design and implementation of the software and firmware

1

10

100

1 10 100 1000 10000 100000 1e+06

P
ac

ke
ts

 H
an

dl
ed

 p
er

 In
te

rr
up

t

Message Length (bytes)

Packet Size 8
Packet Size 1024
Packet Size 4096

Figure 10: Number of packets handled per interrupt versus message length for Comms2.

communication.
In Linux, there are two facilities to execute a task: processes and threads. Each process

has its own memory space, which keeps all other processes from accessing this memory.
Threads exist within processes, sharing the memory space of the process. Memory spaces are
mapped onto physical memory by the Memory Management Unit (MMU) of the processor.
Context switching requires changing the mapping of the MMU. Since threads of the same
process use the same mapping, context switching between these threads takes less CPU time
than context switching between processes.

The amount of time available for a process depends on the amount of time assigned to
it by the scheduler. To avoid suffering of the communication process from the calculation
process, a high priority real-time scheduling strategy is used for the communication process.
This strategy should make sure that the communication process gets scheduled-in as soon as
work for it is available, i.e., at the moment the blocking communication has finished.

Figure 11 shows three Comms2 throughput graphs: without computation, computation
by a thread, and computation by a process. The graphs show that using concurrent threads
has little impact on the communication, and that using processes has a significant impact. We
can estimate this impact by using a quantification based on the Comms1 and 2 linear timing
model[9]:

tn = t0 +
1

r1
� n

rn =
n

tn

CERN / The design and implementation of the software and firmware 13

0

2

4

6

8

10

12

14

16

18

1 10 100 1000 10000 100000 1e+06

T
hr

ou
gh

pu
t (

M
by

te
s/

s)

Message Length (bytes)

No load measurements
Using threads

Using processes

Figure 11: The effect of computation on the throughput for different message lengths, Comms2 and maximum
packet size 4096.

In this model,tn is the latency for a message of sizen; t0 is the latency to send a zero byte
message;rn is the throughput; andr1 is the asymptotic bandwidth, i.e.,limn!1 rn = r1,
the limit on the maximum throughput. From this model one can derive that:

t0 =
n1=2

r1

The valuen1=2 is the half-performance message length, i.e., the message length required
to achieve half the asymptotic bandwidth. Knowingr1 = 16:6 Mbytes/s, we can estimatet0,
by obtainingn1=2 from the throughput graphs in Figure 11. These estimations, see Table 2,
show that the context switching overhead due to the use of processes instead of threads is
significant: a difference of about 600�s in t0. The T9000 results, which are also included
in this table, show how the T9000 outperforms the DSNIC with respect to 0-byte message
latency.

The CPU load of both the process and the thread version are similar for long messages.
This is to be expected: for large messages few process switches need to be performed because
the communication task is nearly continuously sleeping, so the load is caused by interrupt
handling which is identical in both situations. In that case, the interrupt frequency, which is
directly related to the packet size, has a major effect on the load.

Table 3 shows the maximum CPU load measured during Comms1 and Comms2 for
0.5 Mb up to 1 Mb messages. For Comms1, we see that the CPU load roughly doubles
if the packet size halves, sopacket size� load = constant. According to this formula, the
constantis the packet size at which the CPU load would be 100 % to achieve full bandwidth

14 CERN / The design and implementation of the software and firmware

Table 2: Estimations of the 0-byte message latencyt0, for Comms2 and packet size 4096.

Situation n1=2(bytes) t0(�s)
No load 3000 187

Thread load 3000 187
Process load 13000 783

T9000 (1 C104) 26 3.25

Table 3: Maximum CPU load for long messages.

Packet size (bytes) Comms1 CPU load (%) Comms2 CPU load (%)
8 100.0 92.8
16 100.0 87.4
32 100.0 82.8
64 99.9 79.5
128 99.9 89.8
256 93.7 93.0
512 55.3 97.2
1024 28.9 53.4
2048 14.1 36.1
4096 7.1 19.0

utilisation. Using packet sizes smaller than theconstantwill not allow full bandwidth util-
isation. For Comms1, theconstantis approximately 290 for packet sizes of 512 and more.
The 290 indicates that the maximum throughput cannot be reached with packet size 256, as
we have seen before. Furthermore, the 290 corresponds to the end of the throughput dip in
Comms1, where the expected throughput is reached again, see Figure 6.

9 Analysis

9.1 CPU time for handling a packet

During the communication of small messages, the CPU is almost completely dedicated to
packet handling: it is nearly continuously executing the protocol for every packet that is
communicated. The only interference is caused by exiting the interrupt handler for a short
while when the maximum number of events that can be handled in a single interrupt has
been reached. This allows us to calculate a maximum of CPU time required to handle a
packet if it would be dedicated to this task. For Comms2 and a packet size of 8 bytes, the
maximum throughput reached is 0.696 Mbytes/s. This means that the CPU, if dedicated to
packet handling, can handle a packet within 11.5�s. Since the same protocol implementation
is used for any packet size, the required CPU time for handling a packet does not depend on
the packet size.

9.2 Off-loading to a dedicated processor

A dedicated processor might be an interesting solution for off-loading more DSNIC function-
ality to the board. The CPU time for handling a packet allows us to relate the CPU power of
such a dedicated processor to the packet size that can be handled by this processor, assuming
the same communication protocol is used. This would result in a system in which the board

CERN / The design and implementation of the software and firmware 15

takes care of all the packet handling, and the interface between the CPU and the board allows
message communication.

Suppose the dedicated on-board processor isn times slower than the 200 MHz Pentium
Pro. This means that it requiresn � 11:5 �s to handle a packet. To be able to keep up with
the full bidirectional DS link bandwidth, 16.6 Mb/s in our case, we can calculate the required
minimal packet size:16:6 Mbytes/s� 11:5 �s� n.

The typical message length used for real-time analysis in ATLAS is 1 kbyte. For ATLAS,
the dedicated processor is therefore required to be capable of handling packets of this size
adequately. A communication processor that is 5.4 times slower than the Pentium should
just be capable of link saturation. It is expensive to use a dedicated processor to achieve the
optimal packet size of 28 bytes, since it requires a processor with about 7 times the power of
the Pentium. If such a small packet size is required, one has to use dedicated hardware.

9.3 Interrupt service time

In Section 8.3, we derived that an interrupt takes as much time as it takes to send a 270 byte
packet. Knowing that data is sent at 8.3 Mbytes/s, we can derive that it takes 32.5�s to
service an interrupt.

This interrupt service time can be checked against the CPU load for long messages. For
long messages, the processor load depends only minimally on the task switching time. In this
case, the CPU load is caused by interrupts and memory bandwidth usage.

Consider the Comms1 communication of long messages in 4096 byte packets. Knowing
that an interrupt takes 32.5�s to handle, we can conclude that on an average, communicating
a single byte requires 32.5 / 4096 = 7.93 ns CPU time. It requires 65800�s CPU time every
second to sustain the full data rate of 8.3 Mbytes/s. The CPU load due to interrupts for long
messages and packet size 4096 is therefore 6.6 %. This 6.6 % is close to the 7.1 % observed.
The difference can be explained by the memory bandwidth usage, and cache disturbance due
to the interrupts.

9.4 Interrupt overhead

We have derived that a packet can be handled in 11.5�s, and that an interrupt is serviced
in 32.5�s. Therefore, we can calculate the interrupt overhead for an interrupt that services
one packet: 32.5 - 11.5 = 21�s. The interrupt overhead is caused by context switching. On
interrupt handler entry, the context of the current process and its thread must be saved. On
exit, it must be restored. Another negative effect of context switching is cache usage. On
handler entry, memory locations different from the memory locations in the cache are used,
and therefore cache updates are required. In a similar way, the interrupted process suffers
from the interrupt: the cache it was using is disturbed, and cache updates are required.

10 Performance improvements

Improving performance means obtaining higher throughput, lower latency, and lower CPU
load during communication. The communication performance depends on both network and
interface performance. Network performance is influenced by the communication protocol,
as discussed in Section 6. The interface performance is determined by the efficiency of the
implementation of the required operations.

We can distinguish three classes of operations: (1)O(message length) operations, such as
copying of message data and CRC checking, (2)O(nr of packets) operations, the handling of
packets, and (3)O(nr of messages), communication initialisation and task switching.

16 CERN / The design and implementation of the software and firmware

-2

0

2

4

6

8

10

12

14

16

18

1 10 100 1000 10000 100000 1e+06

T
hr

ou
gh

pu
t (

M
by

te
s/

s)

Message Length (bytes)

A
B
C
D

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000 100000 1e+06

C
P

U
 L

oa
d

(%
)

Message Length (bytes)

A
B
C
D

Figure 12: The effects of two performance improvement methods on the throughput and CPU load graph for
Comms2 and packet size 1024. Graph A models the performance of the current system when using threads to
perform the computation. Graph B models the performance of a system in which all packet handling is off-
loaded to the DSNIC board. Graph C models the performance of a system with low-latency context switches.
Graph D models a system that takes both the advantages of B and C. Compared to A and B, graphs C and D
show an improvement in throughput.

By using DMA directly to process space and a reliable network, we have avoided imple-
menting anyO(message length) operations on the CPU. The maximum throughput is there-
fore limited by the C101 hardware and not by the CPU power. We have chosen to implement
theO(nr of packets) operations, i.e., the packet handling, on an interrupt basis. TheO(nr of
messages) operations are implemented as kernel calls that execute reschedule operations.

We focus on two methods to improve performance: using the DSNIC board for packet
handling, and using alternatives for OS functionality. By extending the Comms1 and 2 com-
munication model so it takes the CPU load caused by communication into account, we can
estimate the effect of the two performance improvements on the throughput and the CPU
load graph, see Figure 12.

10.1 Modelling the CPU load

We model the CPU time to communicate a message of lengthn by the sum of a fixed timec0
and a time dependent on the message lengthn:

cn = c0 + c byte� n

The factorc byte is the per-byte CPU time. Notice that0 � c0 � t0. Knowing the
CPU time to communicate a message,cn, and the communication latency,tn, the following
equation expresses the CPU loadln:

ln =
cn

tn
� 100 %

The valuel0, which equals(c0=t0)� 100 %, expresses the CPU load for sending a 0-byte
message. Furthermore, we can derive the following for the asymptotic CPU loadl1:

l1 = lim
n!1

ln = c byte� r1 � 100 %

In Section 9.3, we have already used this equation. The asymptotic CPU load,l1, calcu-
lated there, usingc byte= 32:5 �s=4096 bytes= 7:93 ns/byte for the per-byte CPU time for
4096 byte packets, matches the measured CPU load for long messages.

CERN / The design and implementation of the software and firmware 17

The results presented in this paper allow us to derive the parameters of the model that
match the Comms2 communication using a packet size of 1024, i.e., the typical packet size
required for ATLAS, and threads to perform the computation results. From Figure 7, we can
determine thatr1, the asymptotic bandwidth, equals 16.6 Mbytes/s. Furthermore, this figure
allows us to determine thatn1=2 = 1480. Sincet0 = n1=2=r1, we know thatt0 = 178 �s.
Knowing from Table 3 thatl1 = 53:4 %, allows us to determine thatc byte= 32:17 ns/byte,
usingc byte= l1=(100 %� r1). We cannot derivec0 from the measurements, therefore we
assume the CPU load is 100 % during 0-byte message communication, soc0 = t0. These
parameters have been used to reconstruct the performance graphs of the current system, see
graph A in Figure 12.

10.2 Using the DSNIC board for packet handling

By off-loading all the packet handling to the DSNIC board, as discussed in Section 9.2, all
the packet handling interrupts, which areO(nr of packets), can be avoided. Avoiding these
interrupts has no effect on the communication latency, since this latency is caused by theO(nr
of messages) operations. Since latency and throughput are directly coupled in Comms1, there
is no effect on the throughput graph. The gain is to be expected in CPU load. For ATLAS,
which requires packet size 1 Kbyte, this can result in a performance gain of up to 53 %, see
Table 3. This potential gain is modelled usingc byte= 0, see graph B in Figure 12.

10.3 Low-latency context switches

Context switches are the main cause of both latency and CPU load. We can distinguish three
types of context switches: (1) rescheduling, requiring context switches between processes
or between threads, (2) kernel calls, requiring context switching between process and kernel
space, and (3) interrupts requiring context switching between process and kernel space.

In a general purpose OS, these context switches require a lot of CPU time, and thereby
cause both latency and load. Using light weight alternatives for the OS context switches can
therefore result in a significant performance improvement. However, a light weight alterna-
tive usually implies a restriction in some other field, e.g., no protection between processes, a
limitation in the use of OS functionality, or support for only a single process. If the restriction
is acceptable, this method offers an interesting solution. Solutions that apply this method can
be found in [4], [14], and [20]. Graph C in Figure 12 shows the potential of such an improve-
ment, assuming the 0-byte latencyt0 is 20�s, instead of187 �s, and assuming the interrupt
handling overhead can be completely removed, which reduces the interrupt handling time
from 32.5�s to 11.5�s. Furthermore, graph D in Figure 12 shows the effect of applying
both the improvement methods: off-loading and low-latency context switches.

11 Conclusion

We have developed the DSNIC by continuously keeping the design aim in mind: optimise for
low-latency high-throughput communication, requiring little CPU load. To accomplish this,
the CSP based API is extended with facilities for asynchronous, non-blocking, and zero-copy
communication. Furthermore, the communication protocol splits messages into limited size
packets. This avoids continuous wormhole blocking and reduces the network latency. The
protocol supports adaptive routing, and allows full bandwidth utilisation by a sliding window
protocol and a non-restricting acknowledgement scheme. Reliability is ensured by the very
low BER of DS link networks and the use of end-to-end flow control.

18 CERN / The design and implementation of the software and firmware

This way, we have managed to obtain a system that reaches 8.3 Mbytes/s unidirec-
tional process-to-process throughput over a single virtual link. A maximum throughput of
16.6 Mbytes/s is reached for bidirectional communication. In both unidirectional and bidirec-
tional communication, up to 90 % of the maximum theoretical bandwidth can be exploited.
The DSNIC offers a 1-byte message latency of 67�s. This is fast, considering that this
is the process-to-process latency. During 8.3 Mbytes/s unidirectional communication, the
DSNIC requires 7 % CPU load for a packet size of 4096 bytes. For that same packet size and
16.6 Mbytes/s bidirectional communication the CPU is loaded for 19 %.

We have observed that high throughput and low CPU load can only be obtained by using
large packets, e.g., 4096 bytes long. On the other hand, we have shown that the ideal packet
size for the 512 Clos DS link network is small: 28 bytes. Filling this gap completely would
require dedicated hardware.

We have shown that protocol off-loading has the potential to result in a significant gain
of available CPU power, e.g., up to 53 % for packet size 1024. Furthermore, we have shown
that this method requires a substantial amount of on-board computing power.

In general purpose operating systems, context switches are a source of overhead. We have
shown the overhead of one form of context switch: the interrupt. An interrupt that handles
the communication of a single packet takes 32.5�s, whereas the same operation on the same
CPU can also be performed in 11.5�s, an overhead of 65 %. Furthermore, we estimated
the performance loss caused by context switches when using processes instead of threads to
implement concurrent communication and computation.

The DSNIC has outperformed the T9000 in terms of throughput: the DSNIC achieves a
maximum bidirectional throughput of 16.6 Mbytes/s compared to 8 Mbytes/s for the T9000.
However, in terms of latency the T9000 outperforms the DSNIC: the latency for sending a
single byte message on the T9000 is 7.4�s compared to 67�s for the DSNIC. This order
of magnitude difference is due to the T9000’s use of on-chip dedicated hardware to perform
scheduling and communication. In contrast these functionalities are mainly provided in soft-
ware on the DSNIC.

The message latency of the DSNIC is dictated by the efficiency of the software, which
currently relies on standard OS facilities. Major performance improvement can be obtained
by avoiding the use of OS facilities that require context switches, i.e., kernel calls, task
switches, and interrupts; and obtaining adequate alternatives for them. An example imple-
mentation which avoids these standard facilities is presented in [20]. This work uses polling
to avoid interrupts and provides an alternative concept of processes, which allows efficient
context switching. Efficient context switching improves latency and reduces CPU loading.
CPU loading could be improved further by offloading functionality to the communication
board.

Acknowledgements

We are very grateful for the support of the European Union through the Esprit ARCHES
project.

References

[1] The ESPRIT ARCHES Project, The Application, Refinement and Consolidation of HIC Exploiting Stan-
dards. ESPRIT P 20693

[2] The ATLAS Technical Proposal. CERN/LHCC/94-43, LHCC/P2, December 1994. ISBN 92-9083-067-0

[3] DSNIC : The DS Network Interface Card.
http://www.cern.ch/HSI/dshs/dsnic/dsnic.html .

CERN / The design and implementation of the software and firmware 19

[4] Eicken, T. von.Active Messages: an Efficient Communication Architecture for Multiprocessors. Univer-
sity of California at Berkeley, PhD, 1993.

[5] Haas, S., D.A. Thornley, M. Zhu, R.W. Dobinson, R. Heeley, N.A.H. Madsen, B. Martin. Results from
the Macram´e 1024 Node Switching Network.Computer Physics Communications, April 1997. CHEP
’97, Berlin, Germany.

[6] Haas, S., D.A. Thornley, M. Zhu, R.W. Dobinson, R. Heeley, B. Martin.Results from the Macraḿe 1024
Node IEEE 1355 Switching Network. European Multimedia, Microprocessor and Electronics Conference,
November 1997. EMMSEC97, Florence, Italy.

[7] Heeley, R. Real Time HEP Applications using T9000 Transputers, Links and Switches. University of
Liverpool, PhD, October 1996.

[8] Hoare, C.A.R. Communicating Sequential Processes. Prentice Hall International Series in Computer
Science, 1985. ISBN 0-13-153271-5 (0-13-153289-8 PBK).

[9] Hockney, R., M. Berry.Public International Benchmarks for Parallel Computers. PARKBENCH Com-
mittee: Report-1, February 1994.http://www.netlib.org/parkbench/ .

[10] IEEE Std 1355-1995, IEEE Standard for Heterogeneous InterConnect (HIC) (Low-Cost, Low-Latency
Scalable Serial Interconnect for Parallel System Construction). IEEE Computer Society, 1995.

[11] INFN, Instituto Nazionale Fisica Nucleare. Sezione di Roma and University of Roma, La Sapienza, Rome,
Italy. http://www.roma1.infn.it/ .

[12] MPI: A Message-Passing Interface Standard. University of Tennessee, Knoxville, Version 1.1, June 1995.

[13] The Study of Noise on DS links. OMI/Macramé, Esprit project 8603, Working paper 43, October 1996.

[14] Pakin, S., V. Karamcheti, A.A. Chien. Fast Messages: Efficient, Portable Communication for Workstation
Clusters and MMPs.IEEE Concurrency 1063-6552/97, 5(2):60–73, 1997.

[15] Rumbaugh, J., et. al.Object-Oriented Modeling and Design. Prentice-Hall, 1991.

[16] SGS THOMSON Microelectronics.STC101 Parallel DS-Link Adaptor. Engineering Data, August 1995.

[17] SGS THOMSON Microelectronics.STC104 Asynchronous Packet Switch. Engineering Data, April 1995.

[18] The Transputer Data Book, 2nd edition edition, 1989.

[19] Tanenbaum, A.S.Computer Networks. Prentice-Hall, Inc., third and international edition edition, 1996.
ISBN 0-13-394248-1.

[20] Welch, P.H., M.D. Poole.High bandwidth occam Demonstrator for Multiprocessor Alpha/DS-link sys-
tems. Computing Laboratory, University of Kent at Canterbury, CT2 7NF, January 1998.

[21] Zhu, M., D.A. Thornley, J. Pech, B. Martin, N.H. Madsen, R. Heeley, S. Haas, R.W. Dobinson, C.R.
Anderson.Realisation and Performance of IEEE 1355 DS and HS Link based, High Speed, Low Latency
Packet Switching Networks. RT97, September 1997. Beaune, France.

