
Atlas DAQ
FE SLINK-MFCC status
Authors :SV, DF, MJ, GM, JP
Keywords :
Abstract

Current understanding of the MFCC usage as an input to an Slink board.
NoteNumber :
Version :

Date : 2nd September 1999
Reference :

 of the
.

nation
wn in

ation
h its

nnec-
 con-

erious
 ruled

FCC
erfaces
quired).

etween
 pre-
1 Scope

This document is intended as an aid to the discussion on the MFCC implementation
ATLAS ROBIN. It should be used to generate an MFCC-ROBIN specification document

2 Status of the FE part of the MFCC

2.1 July status

During previous months an early study on the possibility of using the MFCC as a desti
card for the SLINK receiver board has been done. A sketch of the MFCC board is sho
Figure 1.

Figure 1: MFCC block diagram (current release, only the blocks relevant to FE, the connection of the FE-
FPGA to P2 is not shown).

The Slink protocol requires that data is transferred out of the SLINK as if the Local Destin
Card (LDC) would be writing into a FIFO, i.e. the LDC provides data synchronized wit
own clock, LCLK.

The MFCC FrontEnd (FE) FPGA has some signal lines directly connected to the FE co
tor, some lines shared with the SSRAM address and data lines. It also drives all SSRAM
trol signals. The SSRAM is single-ported. For these reasons (it could create a s
bottleneck in the data path) the possibility of storing LDC data in the SSRAM has been
out.

The study then focussed on the possibility of having slink data stored directly into the M
System DRAM, either having data pushed by the FE FPGA (PPC master and slave int
required) or having data read and written by the PPC processor (PPC slave interface re

The MFCC design, as it was presented some months ago, required an additional FIFO b
the LDC and the FE FPGA and the Optional SSRAM not mounted/used. The solution
sented in July was the one shown in figure 2.

SSRAM

Front-end

FPGA

SYSTEM
SDRAM

PCI BRIDGE

Power PC

PPC bus

Data/Add
lines

Control lines

Input connector
- 2 -

ata to
ly into

ing the

ir side

mode.

can
on-
Figure 2: July solution for interfacing LDC to MFCC.

The double clocked FIFO was needed in front of the FE FPGA to resynchronize SLINK d
the rest of the MFCC board. At this idea CES suggested to implement the FIFO direct
the FPGA.

The data could be trasferred by polling a register accessible from the ppc bus contain
fifo status flags.Status (990113)

Last contacts with CES have given new informations, much work as been done on the
driven by suggestions from other customers:

1) The current development of the FE FPGA foresees:

• a PPC Slave interface, capable of single RW accesses and of reading in cached line

• a set of user definable registers accessible in RW.

• a FIFO (32 bit width x 128 depth), implemented with a cycle shared RAM. This FIFO
unfortunately be operated only at 16 MHz maximum. SLINK requires 32 bit data + 1 C
trol bit and 33 MHz operation.

UXOFF*

URESET*

UTDO*

UDW(1:0)

LCTRL*

LD(31:0)

LWEN*

LCLK

LDERR*

URL(3:0)

LDOWN*

S
LI

N
K

 L
D

C
SYNC
FIFO

FE
FPGA

FD(31:0)

FREN

FCLK

FF

AF

HF

EF

PPC bus (70 pins)

MFCCATLAS CUSTOM
(mechanics+FIFO)

50 IO signals required at mfcc input (plus FIFO flags programming lines?)
72 BIDIR and 2 GLOBAL inputs available on Front Panel IO
63 BIDIR and 1 GLOBAL input available on PMC PN4 IO

SLINK standard

FIFO is seen by ppc as a set of two registers:
FIFO read registers
FIFO status register (FF,AF,AE,EF flags)

FIFO must be accessible by ppc bus in DMA read mode.

ppc processor can look for data availability by polling on FIFO status register and
subsequently write in DMA to SDRAM.

FE FPGA takes care of interfacing FIFO to SLINK (link down etc) and implements a
ppc slave DMA read transaction.
- 3 -

 and
n our

om-

 128
g up

into the
s.

ode

A is
2) The board will mount a new version of the Flex 10k FE FPGA, with improved speed
Double Ported RAMs, capable of implementing a Double Clocked FIFO, as required i
design.

3) Next version of MFCC, coming out by end of February will have also the SSRAM c
pletely decoupled by the FE lines, for a better usage of this memory, if needed.

Very preliminary studies, done with tools available at CERN, indicate that a 33bit wide X
bit deep fifo in this technology could run at about 50 MHz (we need 40 MHz max), usin
about 10% of memory space and 5% of logic space of the FPGA.

CES has released some new documentation.

CES is willing to modify the PPC slave, in order to be able to read at possibly 33 MHz.

CES states that it is not possible to implement a ppc master capable of pushing data
SDRAM because it would consume much or all of the currently used FE FPGA resource

One possible solution would be the one shown in figure 3.

Figure 3: New MFCC version and possible data flow.

To be discussed

Is the current approach valid ?

If the approach would be considered some valid actions could be taken:

1. Current CES development could be evaluated, to test data transfers in cashed line m
from FE-FPGA to SDRAM and measure CPU usage (the single cycle RW access on
SDRAM of 70/80 MB/s is of some concern). The hardware required to download FPG
not available at the moment. Code sources are available to generate download files.

SSRAM

Front-end FPGA

SLINK

SYSTEM
SDRAM

PCI BRIDGE

Power PC

PPC bus

DCFIFO PPC
slave

user
regs

FIFO
flags

Data moved at LVL2 rate

Data moved at LVL1 rate
- 4 -

tion
.

tatus
cept real
ppc-

.

, loss

ter.
DS.

ng

nd the
ed line

ments
ure the
e data
 the

ross the
2. We could define and simulate the solution presented in Figure 3, with the next genera
device which will be mounted on new MFCC. All software tools are available at CERN
MFCC for evaluation will arrive end of February.

3. Understand the electrical connection and timing properties of the available SLINK to
MFCC adaptor, if not yet done.

4. Would it be better technically to consider input to the MFCC via the P2 connector?

5. Do we need a 6U board to hold FC technology (LDC)?

6. Could we ask CES to use a bigger FE-FPGA to implement the ppc master?

2.2 Status (990120)

Current simulation of the FE-FPGA now includes the DCFIFO (in CES test-bench). S
flags are accessible by a user register. The ppc-slave block has been adapted to ac
FIFO flags to properly terminate cached line reading (currently fifo control logic is inside
slave, it is not capable of handling external data).

The final DCFIFO fitting code has to modified by CES, to check the real implementation

CES should modify the ppc-slave interface to read FIFO at full speed, if needed.

At simulation level the CES test-bench has to be modified to allow for external data.

The SLINK protocol has to be implemented. The basic idea is the following:

• implement 32 bit word transmission (8 and 16 bit data transfer not foreseen in ATLAS
of a factor 4 or 2 on the output bandwidth).

• Reset signal driven by URESET flag in user register

• flow control compares number of data words into fifo with NWORDS field in user regis
Transmit off signal generated when number of fifo words equal or greater that NWOR

• link transmit error is monitored by user register flag XERR. It could also be written alo
with data (word by word error reporting).

• Control word flag written along with normal data into FIFO.

All the hardware required for testing is available. Code sources have been compiled a
downloading files are ready. Software available only for single accesses now but cach
reading functions should come in about one week.

Now two possible implementation are under study:

1) master ppc interface and buffer management at FPGA level. Master ppc require
and implementation issues have to be discussed with CES. In the current architect
front-end FPGA is not equipped with a PPC master. Therefore, the only way to mov
from it to a buffer SDRAM is to use the CPU. This, however, is not very efficient since
data unnecessarily has to pass through the CPU and hence is transferred twice ac
PPC bus (FPGA->CPU and CPU->SDRAM).
- 5 -

er and
oher-
wever,

eader)

e PPC

ress

mem-

MA

rrently
ffers).
t list. If
 have
pace
f this

n uses
 CES.

 meas-

2 con-
s of that
 can be

.

, with
alida-

 revi-
As CES explained to us it would be very difficult to put a general purpose PPC mast
DMA controller into the front-end FPGA. This is mainly because support for cache c
ency and crossing of address boundaries would cost a lot of gates. In our case, ho
where the events are small, stored in aligned buffers and not (except for the h
accessed by the CPU one can make some simplifications:

- The memory reserved for event data storage will be marked non-cacheable and th
master will not check for cache inconsistencies

- Each transfer from the front-end FPGA to SDRAM will start at a 1KByte aligned add

- DMA transfers are not allowed to cross certain address boundaries (8 KBytes, if I re
ber right)

According to CES, these simplifications would allow them to shrink the PPC master / D
controller to an acceptable size.

What is less clear right now is how the buffer management would have tobe done. Cu
the Event Manager maintains a list (software FIFO in SDRAM) of free pages (data bu
Each time a new event arrives one of these pages is allocated and removed from tha
the front-end FPGA is supposed to initiate the event transfer by itself, it would have to
access to this list. A fraction of this list could be written (limited by the amount of s
available) into the front-end FPGA, where it would be accessed locally. The details o
issue have to be discussed with CES.

2) a slave ppc interface and buffer management at ppc Processor level. This solutio
more heavily the ppc bus and processor but is simple and requires small efforts from
Still remains to be decided if this implementation should be done and its performance
uremed.

A short discussion with Van Der Bij revealed that no electrical test has been done on P
nector, long connection stubs could be dangerous (need to undestand responsibabilitie
group). Current adaptor uses P2. A study has to be done whether the front connector
used (mapping is understood, it has to be checked by CES).

Clearly a formal meeting/request to CES should follow as soon that our needs are clear

2.3 Status (990125)

The simulation of the ppc-slave is almost complete, it now includes the slink interface
flow control. It is possible to monitor the link status from a user register. It now needs v
tion from CES on the following points:

• update our modified ppc slave, to handle 34 bit fifo at full speed, and include new CES
sion received last week.

• top level block has to accomodate new IO pin names and dcfifo.

The master-ppc mode of operation has been defined. It is shown in Figure 4.
- 6 -

s

e

;

ge;
Figure 4: Master-ppc FE-FPGA block diagram

1. The Slink LDC sends 32 bit of data, control bit and error bit to a 34-bit wide 256-word
deep FIFO.

2. LDC clock drives the FIFO Write Clock (Wrclk).

3. LDC Reset is given by the content of the ldc_reset bit in the MAIN user register.

4. Each FIFO has its own reset bit in a user register.

5. Transmit OFF (XOFF) is generated by comparing a threshold field in the MAIN with th
FIFO filling state (Rrusedwords).

6. FIFO reset is given by the content of the fifo_reset bit in the MAIN user register.

7. FIFO flags (Rempty, Rfull, Rrusedwords) are monitored via the MAIN.

8. A state machine (buffer_manager) is in charge of the following:

• check for new pages in the VALID_PAGES FIFO;

• check for data in DCFIFO;

• find packet header (control word with expected header_footprint);

• send PPC MASTER interface DMA starting address, with proper page_start_offset

• read FIFO, send data and count number of words;

• check whether number of words exceeds page_size;

• check for packet footer (control word with expected footer_footprint) or for end of pa

• the number of pages per event will be limited to a value written into a user register.

SLINK
LDC

DCFIFO
(34X512)

DCFIFO
(24X16)

DCFIFO
(26X16)

PPC
MASTER
SLAVE

data(32)

ctrl_n

xerr_n

fdata(32)

f_ctrl_n

f_xerr_n

Buffer
Manager

USED PAGES
FIFO

VALID PAGES
FIFO

valid_page_address(24)

data_to_ppc(32), sdram_start_add(32)

used_page_info

last_used_page(24)

page_error, new_page

next_page(24)

USER REGISTERS

header_footprint

footer_footprint

page_start_offset

page_size

regs(32)MAIN USER REGISTER

threshold flags

ldc_reset fifo_reset

XOFF
- 7 -

ages,

,

IFO,

icative.

. It has
vaila-
 pro-

used
til the

ge,

and

inds

es the
• at the end of packet or at end of page or having reached the maximum number of p
write page_error (if an error flag was set during the current packet) or new_page
(new_page is set to FALSE if the packet is not finished yet) to USED_PAGES FIFO
together with the used page address.

9. A set of USER register:

1. MAIN (already described)

2. header_footprint (32 bit)

3. footer_footprint (32 bit)

4. page_start_offset (16 bit)

5. page_size (16 bit).

6. max pages (8 bit).

10.a DATA FIFO (dcfifo) 34bit wide by 256 words deep.

11.a VALID PAGES FIFO (24 bit wide by 16 words deep)

12.a USED PAGES FIFO (26 bit wide by 16 words deep).

13.a PPC MASTER, capable of generate DMA write cycles to the SDRAM.

14.a PPC SLAVE, capable of RW in single access the user registers, READ the DATA F
RW VALID PAGES FIFO, RW USED PAGES FIFO.

A decision on register and FIFO sizes has to be taken. The numbers shown are only ind

2.4 Status (990201)

The fe-fpga with ppc slave interface has been developped on the existing MFCC version
a small FIFO, 34 bit wide, 16 word deep, the only that can be implemented without any a
ble DPRAM blocks. The new program has been downloaded into MFCC with the SLINK
tocol.

Some issues on error correction in the buffer_manager have been defined:

• if control word does not contain the header_footprint, the buffer_manager issues a
page with the error flag set and reads the data fifo until it finds a good header or un
it is empty.

• if a control word is found without a trailer footprint, the buffer_manager closes a pa
with the error flag set.

• if the maximum number of pages is reached, the buffer_manager closes last page
issues an error, then starts looking for a new header.

• if the buffer_manager finds data into the fifo and no header, it flushes the fifo until it f
a new header.

• if the buffer_manager finds a header, then a data packet, then a new header, it clos
page with the error flag set.
- 8 -

attern,

ic. It
to be

r reg-

 to use
 1 kB,

ssor,
l the
2.5 Status(990210)

The S2P2, Slink to MFCC interface has been tested, with a SLIDAS generating a test p
running at 40 MHz. Pin assignment is correct. It looks fine.

A small test program has been run to check the functionality and the transmit-off log
works fine when the FIFO threshold is set to two words, i.e. the XOFF_N signal has
issued 14 clock ticks before the FIFO fills.

All functionalities of the ppc-slave option have been implemented. A map of the two use
isters follows:

Table 1: user register 0, RW access

Table 2: user register 1, R access

A rough evaluation of bandwidth requirements has shown that the only viable solution is
the ppc-master option. Given 100 KHz LVL1 trigger rate and an average event size of
we expect 100 MB/s (BW) from the SLINK.

The ppc-slave option would require 2 BW for transferring data from MFCC to PPC proce
BW from the processor to DRAM, and approximately 0.5 BW for other needs. In tota
required bandwidth on the ppc bus would be 350 MB/s.

ADD 0x user_reg_0 bits

lemoen_n 26

groupb_in_n 25

groupa_in_n 24

slink_ureset_n 23

lemb[3..0] 15..12

lema[3..0] 11..8

fifo_thresh[6..0] 6..0

ADD 4x user_reg_1 bits

fifo_error_n 28

fifo_ctrl_n 24

fifo_empty 16

fifo_full 12

no_words_in_fifo 7..0
- 9 -

d to the

s at

 for
ccess).

CES
ties is

master

ctivity

e on the
ager,
t be
It has been decided that the ppc-slave option is a good start but focus has to be move
final implementation:

• it has permitted to undestand the software tools (all is available as central resource
CERN).

• the SLINK protocol has been implemented and tested

• the electrical adapter S2P2 has been tested.

The ppc-master option requires only BW to move data from MFCC to DRAM and 0.5 BW
other needs (ROI requests ...), for a total of 150 MB/s (100 MB/s would be cached line a

A baseline solution for the ATLAS ROBIN has been defined now. It requires input from
on time schedules. Also a clear partition between ATLAS specific and CES general facili
needed, to work efficiently and in parallel on the new MFCC.

2.6 Status(990601)

A first ROBIN logic scheme has been simulated, in order to be ready when CES PPC
block will arrive.

The schematics is shown in Fig.5, (a detailed description of each block and its conne
will be written soon).

Figure 5: ROBIN block schematic

The buffer_manager state machine design is debugged, but some assumptions are don
PPC-master block. Block transfer is currently completely controlled by the buffer_man
this will probably differ from the final implementation, where complete control might no
- 10 -

imiza-

ts input-
ing in
available. A bubble diagram of the buffer_manager states is shown in Fig.6. Further opt
tion of the buffer_manager block will be done when all the design blocks are available.

Figure 6: buffer_manager state machine block diagram.

Simulation work has been done to debug and evaluate the state machine design and i
output signals requirements. An example is shown in Fig.7, where a complete event com
the ROBIN is written in two memory pages.

READ_
HEADER

CHECK_

HEADER

CHECK_

VALID

CHECK_
FIFO VALID

STORE_ STORE_
OFFSET VALID

READ_

DMA

START_

WAIT_

DATA

ERROR

CHECK_

WRITE_
NEW_
PAGE

READ_

FIFO

RESTART_
NEW_
CACHE

WRITE_

ERROR

IDLE

WRITE_

USED

USED

CHECK_
- 11 -

are

e sub-

Figure 7: Handling of an event spanning over two memory pages (page sizes and event size values used
just demonstrating the capability of the state machine and are not the final ones).

A list of the required control and status register follows. The base addresses could b
ject to changes in the final implementation.

Table 3: Footer register: this register contains the ATLAS footer footprint

Table 4: Header register: this register contains the ATLAS header footprint

Table 5: Page control register: this register controls the pages sizes, offsets, and the maximum number of
pages to be written for the same event, before issuing an error condition.

 ADD 00x footer_reg bits

footer_footprint(16
MSBs)

15:0

ADD 04x header_reg bits

header_footprint (16
MSBs)

15:0

ADD 08x
page_control_reg bits

max_pages 31:28

page_start_offset 23:16

page_size 15:0

SimWave 3.17-E Tue Jun 1 12:14:26 1999

time (ns)

3524.977 4000.0 4500.0 5000.0 5500.0 6000.0 6500.0 7000.0 7500.0

Top:Fifo_Clr

Top:Clr_N

Top:Uxoff_N

Top:Ld

Top:Ctrl_N

Top:Lwen_N

Top:D

Top:Wrreq

Top:Rwords

Top:Fifo_Ef

Top:I0:Curr_Bmstate

Top:Fifo_Read

Top:Valid_In

Top:Dvalid

Top:Valid_Write

Top:Valid_Ef

Top:Valid_Read

Top:Bmadd

Top:Bm_Start

Top:Q

Top:Bm_Stop

Top:Used_Write

Top:Dused

Top:Used_We

ffffffff ffffffff

3ffffffff 3ffffffff

000 005 00e 00f 011012013 015016017 01901a01b01d 01b 014 00c 004 000

IDLE READ_FIFO READ_FIFO READ_FIFO READ_FIFO READ_FIFO READ_FIFO READ_FIFO READ_FIFO IDLE

200000 300000 400000

XXXXXX 200000 300000

XXXXXXXX 00200000 00300000

XXXXXXXXX 280000000 380000026 2aaaaaaaa

1XXXXXX 0002000 1003000
- 12 -

Table 6: Valid pages FIFO: it contains up to 16 valid page addresses, to be used by the ROBIN

Table 7: Used pages FIFO: it contains up to 16 page addresses, used by the ROBIN

Table 8: Main status register: it contains the main data fifo flags and slink and buffer manager status

Table 9: Main Control register: it contains the maximum DMA transfer size and the slink interface
registers.

ADD 0Cx valid_pages_reg bits

valid_add 15:0

 ADD 10x used_pages_reg bits

page_error 31 (R only)

next_page 30 (R only)

used_wcnt 23:16 (R only)

used_add 15:0 (R only)

ADD 14x main_status_reg bits (R only)

slink_ctrl_n 31

slink_error_n 30

slink_down_n 29

buffer_manager_busy 28

valid_ef 25

valid_ff 24

valid_words 23:18

used_ef 17

used_ff 16

used_words 15:10

main_fifo_ef 9

main_fifo_ff 8

main_fifo_words 6:0

ADD 18x main_control_reg bits

page_hi_offset 31:24

dma_fifo_clear 22

ppc_fifo_clear 21
- 13 -

 addi-
s been

better

 DMA
Table 10: slink to P2 board control and status register

2.7 Status (990902)

A complete ROBIN scheme has been simulated and fitted into the new FPGA device. An
tional buffering stage, controlled by a second state-machine called DMA-manager, ha
added for the following reasons:

• DMA Master block needs a wordcount to initiate the DMA

• the DMA begins after a complete event or a full page is filled. In this case we have a
usage of the PPC bus bandwidth.

The communication between the buffer-manager and the DMA-manager is done via a
FIFO, which contains one full DMA address and wordcount per page.

used_fifo_clear 20

valid_fifo_clear 19

main_fifo_clear 18

buffer_manager_clear 17

dma_manager_clear 16

line_size (not used) 15:12

slink_clear_n 11

dma_manager_on 10

buffer_manager_on 9

main_fifo_threshold 8:0

ADD 1cx s2p2_reg bits

slink_ld(31:0) 31:0

ADD 18x main_control_reg bits
- 14 -

k. In
 the PPC

ager
he 66

ting of
FIFO,
Figure 8: New ROBIN scheme

The achievable speed is 60 MHz on the Slink clock, and 68 MHz on the 66 MHz cloc
order to achieve the speed some cleanup of unnecessary features has been done on
master part.

On the ROBIN specific part now the Slink clock drives the Slink FIFO, the buffer_man
state machine, the reading of the Valid pages FIFO and the writing of the Event FIFO. T
MHz clock drives the PPC master and slave parts, the Robin internal registers, the wri
the Valid pages FIFO, the DMA_manager state machine, the internal DMA_manager
the Used pages FIFO.

Current FIFO sizes are as follows:

FIFO name type widthxdepth

Slink fifo Single-clock, mem-
ory-based

34x128

Valid page FIFO Double-clock, Mem-
ory-based

16x64

Used page FIFO Single-clock, mem-
ory-based

32x64

PPC buffer FIFO Double-clock, mem-
ory-based

32x512

DMA FIFO Double-clock, Flip-
Flop-based

32x8

SLINK
LDC

DCFIFO
(34X512)

SCFIFO
(24X16)

SCFIFO
(26X16)

PPC
MASTER
SLAVE

data(32)

ctrl_n

xerr_n

fdata(32)

f_ctrl_n

f_xerr_n

Buffer
Manager

USED PAGES
FIFO

VALID PAGES
FIFO

valid_page_address(24)

last_used_page(24)
page_error, new

_page

next_page(24)

USER REGISTERS

header_footprint

footer_footprint

page_start_offset

page_size

regs(32)

MAIN USER REGISTER

threshold flags

ldc_reset fifo_reset

XOFF

SCFIFO
(34X512)

SCFIFO
(42X8)

DMA
Manager

wordcount,
dmadd

new_page,
page_error

event data,
no frame

dma_start
wordcount

dma_done

event data

EVENT BUFFER
- 15 -

FPGA.

 logic
me has

come
. A

]

ters

ining

 the
Some FIFOs had to be implemented with Flip-Flops because of lack of resources in the

A downloadable file is available for testing. The resources used are currently 91% of the
and 51% of the total memory. In order to gain some resources a new addressing sche
been envisaged. The implementation still does not contain this new addessing scheme:

• the addressing scheme should be changed, the USED and VALID pages FIFO will be
16 bit wide and contain 14 bit addresses, the middle prortion of the full page address
page address used by the DMA manager will finally be composed like follows:

PAGE_ADD[31:0]=PAGE_BASE[7:0] & ADD[13:0] & PAGE_START_OFFSET[7:0
& “00”

where PAGE_BASE and PAGE_START_OFFSET will be contained in mfcc regis
and ADD will be read(written) from(to) the Valid(used) page FIFO.

A to-do list follows:

• the Used pages FIFO is written by the DMA_manager with one word per page, conta
the wordcount only. The page address has to be written as the second word.

• the PAGE_START_OFFSET is currently used in every page. It has to be used only in
first page of a multi-page event.

The tables in paragraph 2.6 have been updated.
- 16 -

	1 Scope
	2 Status of the FE part of the MFCC
	2.1 July status
	Figure 1: MFCC block diagram (current release, only the blocks relevant to FE, the connection of ...
	Figure 2: July solution for interfacing LDC to MFCC.
	Figure 3: New MFCC version and possible data flow.
	To be discussed
	1. Current CES development could be evaluated, to test data transfers in cashed line mode from FE...
	2. We could define and simulate the solution presented in Figure 3, with the next generation devi...
	3. Understand the electrical connection and timing properties of the available SLINK to MFCC adap...
	4. Would it be better technically to consider input to the MFCC via the P2 connector?
	5. Do we need a 6U board to hold FC technology (LDC)?
	6. Could we ask CES to use a bigger FE-FPGA to implement the ppc master?

	2.2 Status (990120)
	2.3 Status (990125)
	Figure 4: Master-ppc FE-FPGA block diagram
	1. The Slink LDC sends 32 bit of data, control bit and error bit to a 34-bit wide 256-words deep ...
	2. LDC clock drives the FIFO Write Clock (Wrclk).
	3. LDC Reset is given by the content of the ldc_reset bit in the MAIN user register.
	4. Each FIFO has its own reset bit in a user register.
	5. Transmit OFF (XOFF) is generated by comparing a threshold field in the MAIN with the FIFO fill...
	6. FIFO reset is given by the content of the fifo_reset bit in the MAIN user register.
	7. FIFO flags (Rempty, Rfull, Rrusedwords) are monitored via the MAIN.
	8. A state machine (buffer_manager) is in charge of the following:
	9. A set of USER register:
	1. MAIN (already described)
	2. header_footprint (32 bit)
	3. footer_footprint (32 bit)
	4. page_start_offset (16 bit)
	5. page_size (16 bit).
	6. max pages (8 bit).

	10. a DATA FIFO (dcfifo) 34bit wide by 256 words deep.
	11. a VALID PAGES FIFO (24 bit wide by 16 words deep)
	12. a USED PAGES FIFO (26 bit wide by 16 words deep).
	13. a PPC MASTER, capable of generate DMA write cycles to the SDRAM.
	14. a PPC SLAVE, capable of RW in single access the user registers, READ the DATA FIFO, RW VALID ...

	2.4 Status (990201)
	2.5 Status(990210)
	Table 1: user register 0, RW access
	Table 2: user register 1, R access

	2.6 Status(990601)
	Figure 5: ROBIN block schematic
	Figure 6: buffer_manager state machine block diagram.
	Figure 7: Handling of an event spanning over two memory pages (page sizes and event size values u...
	Table 3: Footer register: this register contains the ATLAS footer footprint
	Table 4: Header register: this register contains the ATLAS header footprint
	Table 5: Page control register: this register controls the pages sizes, offsets, and the maximum ...
	Table 6: Valid pages FIFO: it contains up to 16 valid page addresses, to be used by the ROBIN
	Table 7: Used pages FIFO: it contains up to 16 page addresses, used by the ROBIN
	Table 8: Main status register: it contains the main data fifo flags and slink and buffer manager ...

	Table 9: Main Control register: it contains the maximum DMA transfer size and the slink interface...
	Table 10: slink to P2 board control and status register

	2.7 Status (990902)
	Figure 8: New ROBIN scheme

	FE SLINK-MFCC status
	Authors : SV, DF, MJ, GM, JP
	Keywords :

	Abstract
	Current understanding of the MFCC usage as an input to an Slink board.
	NoteNumber :
	Version :
	Date : 2nd September 1999
	Reference :

